This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231608 #17 Nov 19 2014 14:26:24 %S A231608 3,3,5,5,7,11,3,7,13,17,3,5,11,19,29,5,7,11,13,37,41,3,7,13,23,17,43, %T A231608 59,3,5,11,19,29,23,67,71,5,7,17,17,31,53,31,79,101,3,11,13,23,19,37, %U A231608 59,37,97,107,7,11,13,31,29,29,43,71,41,103,137 %N A231608 Table whose n-th row consists of primes p such that p + 2n is also prime, read by antidiagonals. %H A231608 T. D. Noe, <a href="/A231608/b231608.txt">Rows n = 1..100 of triangle, flattened</a> %e A231608 The following sequences are read by antidiagonals %e A231608 {3, 5, 11, 17, 29, 41, 59, 71, 101, 107,...} %e A231608 {3, 7, 13, 19, 37, 43, 67, 79, 97, 103,...} %e A231608 {5, 7, 11, 13, 17, 23, 31, 37, 41, 47,...} %e A231608 {3, 5, 11, 23, 29, 53, 59, 71, 89, 101,...} %e A231608 {3, 7, 13, 19, 31, 37, 43, 61, 73, 79,...} %e A231608 {5, 7, 11, 17, 19, 29, 31, 41, 47, 59,...} %e A231608 {3, 5, 17, 23, 29, 47, 53, 59, 83, 89,...} %e A231608 {3, 7, 13, 31, 37, 43, 67, 73, 97, 151,...} %e A231608 {5, 11, 13, 19, 23, 29, 41, 43, 53, 61,...} %e A231608 {3, 11, 17, 23, 41, 47, 53, 59, 83, 89,...} %e A231608 ... %p A231608 A231608 := proc(n,k) %p A231608 local j,p ; %p A231608 j := 0 ; %p A231608 p := 2; %p A231608 while j < k do %p A231608 if isprime(p+2*n ) then %p A231608 j := j+1 ; %p A231608 end if; %p A231608 if j = k then %p A231608 return p; %p A231608 end if; %p A231608 p := nextprime(p) ; %p A231608 end do: %p A231608 end proc: %p A231608 for n from 1 to 10 do %p A231608 for k from 1 to 10 do %p A231608 printf("%3d ",A231608(n,k)) ; %p A231608 end do; %p A231608 printf("\n") ; %p A231608 end do: # _R. J. Mathar_, Nov 19 2014 %t A231608 nn = 10; t = Table[Select[Range[100*nn], PrimeQ[#] && PrimeQ[# + 2*n] &, nn], {n, nn}]; Table[t[[n-j+1, j]], {n, nn}, {j, n}] %Y A231608 Cf. A001359, A023200, A023201, A023202, A023203. %Y A231608 Cf. A046133, A153417, A049488, A153418, A153419. %Y A231608 Cf. A020483 (numbers in first column). %Y A231608 Cf. A086505 (numbers on the diagonal). %K A231608 nonn,tabl %O A231608 1,1 %A A231608 _T. D. Noe_, Nov 26 2013