This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231609 #20 Dec 15 2015 00:55:45 %S A231609 3,7,5,23,13,11,89,31,19,17,139,359,47,37,29,199,181,389,53,43,41,113, %T A231609 211,241,401,61,67,59,1831,293,467,283,449,73,79,71,523,1933,317,509, %U A231609 337,479,83,97,101,887,1069,2113,773,619,409,491,131,103,107 %N A231609 Table whose n-th row consists of primes p such that p + 2n is the next prime, read by antidiagonals. %C A231609 The plot has an unusual gap near 10^5. Why? %H A231609 T. D. Noe, <a href="/A231609/b231609.txt">Rows n = 1..100 of triangle, flattened</a> %e A231609 The following sequences are read by antidiagonals %e A231609 { 3, 5, 11, 17, 29, 41, 59, 71, 101, 107, ...} %e A231609 { 7, 13, 19, 37, 43, 67, 79, 97, 103, 109, ...} %e A231609 { 23, 31, 47, 53, 61, 73, 83, 131, 151, 157, ...} %e A231609 { 89, 359, 389, 401, 449, 479, 491, 683, 701, 719, ...} %e A231609 { 139, 181, 241, 283, 337, 409, 421, 547, 577, 631, ...} %e A231609 { 199, 211, 467, 509, 619, 661, 797, 997, 1201, 1237, ...} %e A231609 { 113, 293, 317, 773, 839, 863, 953, 1409, 1583, 1847, ...} %e A231609 {1831, 1933, 2113, 2221, 2251, 2593, 2803, 3121, 3373, 3391, ...} %e A231609 { 523, 1069, 1259, 1381, 1759, 1913, 2161, 2503, 2861, 3803, ...} %e A231609 { 887, 1637, 3089, 3413, 3947, 5717, 5903, 5987, 6803, 7649, ...} %e A231609 ... %t A231609 nn = 10; t = Table[{}, {nn}]; complete = 0; lastP = 3; While[complete < nn, p = NextPrime[lastP]; diff = p - lastP; If[diff <= 2*nn && Length[t[[diff/2]]] < nn - diff/2 + 1, AppendTo[t[[diff/2]], lastP]; If[Length[t[[diff/2]]] == nn - diff/2 + 1, complete++]]; lastP = p]; t2 = PadRight[t, {nn, nn}, 0]; Table[t2[[n-j+1, j]], {n, nn}, {j, n}] %Y A231609 Cf. A001359, A029710, A031924, A031926, A031928. %Y A231609 Cf. A031930, A031932, A031934, A031936, A031938. %Y A231609 Cf. A000230 (numbers in first column). %K A231609 nonn,tabl,look %O A231609 1,1 %A A231609 _T. D. Noe_, Nov 26 2013