cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231645 Number of n X 2 0..2 arrays with no element less than a strict majority of its horizontal and vertical neighbors.

Original entry on oeis.org

3, 35, 104, 341, 1189, 4040, 13560, 45803, 155131, 524683, 1773770, 5998876, 20290918, 68629108, 232120783, 785115525, 2655576210, 8982247095, 30381769982, 102764504913, 347595681724, 1175726561166, 3976846922803, 13451535863780
Offset: 1

Views

Author

R. H. Hardin, Nov 12 2013

Keywords

Comments

Column 2 of A231651.

Examples

			Some solutions for n=3:
..1..1....2..2....0..0....1..1....1..2....0..0....0..0....0..0....2..0....0..1
..2..1....1..1....0..2....2..2....0..0....2..1....0..0....0..0....2..0....0..0
..1..1....1..1....0..0....1..1....0..0....0..0....2..1....1..2....0..0....1..0
		

Crossrefs

Cf. A231651.

Formula

Empirical: a(n) = 6*a(n-1) - 12*a(n-2) + 19*a(n-3) - 32*a(n-4) + 15*a(n-5) - 13*a(n-6) + 13*a(n-7) + 10*a(n-8) + 7*a(n-9) + 5*a(n-10) + a(n-11) for n>12.
Empirical g.f.: x*(3 + 17*x - 70*x^2 + 80*x^3 - 178*x^4 + 97*x^5 - 49*x^6 + 100*x^7 + 73*x^8 + 48*x^9 + 31*x^10 + 6*x^11) / (1 - 6*x + 12*x^2 - 19*x^3 + 32*x^4 - 15*x^5 + 13*x^6 - 13*x^7 - 10*x^8 - 7*x^9- 5*x^10 - x^11). - Colin Barker, Mar 18 2018