cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A231645 Number of n X 2 0..2 arrays with no element less than a strict majority of its horizontal and vertical neighbors.

Original entry on oeis.org

3, 35, 104, 341, 1189, 4040, 13560, 45803, 155131, 524683, 1773770, 5998876, 20290918, 68629108, 232120783, 785115525, 2655576210, 8982247095, 30381769982, 102764504913, 347595681724, 1175726561166, 3976846922803, 13451535863780
Offset: 1

Views

Author

R. H. Hardin, Nov 12 2013

Keywords

Comments

Column 2 of A231651.

Examples

			Some solutions for n=3:
..1..1....2..2....0..0....1..1....1..2....0..0....0..0....0..0....2..0....0..1
..2..1....1..1....0..2....2..2....0..0....2..1....0..0....0..0....2..0....0..0
..1..1....1..1....0..0....1..1....0..0....0..0....2..1....1..2....0..0....1..0
		

Crossrefs

Cf. A231651.

Formula

Empirical: a(n) = 6*a(n-1) - 12*a(n-2) + 19*a(n-3) - 32*a(n-4) + 15*a(n-5) - 13*a(n-6) + 13*a(n-7) + 10*a(n-8) + 7*a(n-9) + 5*a(n-10) + a(n-11) for n>12.
Empirical g.f.: x*(3 + 17*x - 70*x^2 + 80*x^3 - 178*x^4 + 97*x^5 - 49*x^6 + 100*x^7 + 73*x^8 + 48*x^9 + 31*x^10 + 6*x^11) / (1 - 6*x + 12*x^2 - 19*x^3 + 32*x^4 - 15*x^5 + 13*x^6 - 13*x^7 - 10*x^8 - 7*x^9- 5*x^10 - x^11). - Colin Barker, Mar 18 2018

A231646 Number of nX3 0..2 arrays with no element less than a strict majority of its horizontal and vertical neighbors.

Original entry on oeis.org

9, 104, 920, 7682, 61574, 490760, 3929027, 31501117, 252454167, 2022844426, 16209670759, 129896538285, 1040912909763, 8341204621591, 66841228911422, 535624801555647, 4292168448581044, 34394795269925139, 275618732897288063
Offset: 1

Views

Author

R. H. Hardin, Nov 12 2013

Keywords

Comments

Column 3 of A231651

Examples

			Some solutions for n=3
..1..0..0....2..0..0....2..1..1....1..1..2....2..1..0....0..0..0....0..2..1
..1..0..0....0..0..1....2..1..2....1..1..1....2..0..0....0..1..2....0..0..1
..1..1..0....0..2..1....2..1..1....2..2..1....0..0..1....0..1..2....2..0..0
		

Formula

Empirical: a(n) = 18*a(n-1) -133*a(n-2) +640*a(n-3) -2309*a(n-4) +5762*a(n-5) -9918*a(n-6) +8864*a(n-7) +2970*a(n-8) -18151*a(n-9) +23183*a(n-10) +21799*a(n-11) -75109*a(n-12) +56329*a(n-13) -9892*a(n-14) -115814*a(n-15) +105665*a(n-16) +64162*a(n-17) -38348*a(n-18) +8767*a(n-19) +54790*a(n-20) -95246*a(n-21) -139155*a(n-22) +81259*a(n-23) +104482*a(n-24) +18968*a(n-25) -2909*a(n-26) -41630*a(n-27) -37578*a(n-28) +6670*a(n-29) +17693*a(n-30) +5629*a(n-31) -713*a(n-32) -928*a(n-33) -300*a(n-34) -52*a(n-35) -4*a(n-36) for n>37

A231647 Number of nX4 0..2 arrays with no element less than a strict majority of its horizontal and vertical neighbors.

Original entry on oeis.org

22, 341, 7682, 137961, 2412274, 42882766, 765163605, 13643499478, 243317286312, 4340128403053, 77412117578960, 1380680024126767, 24625023800964584, 439200986311182069, 7833405373009045177, 139713294059336266128
Offset: 1

Views

Author

R. H. Hardin, Nov 12 2013

Keywords

Comments

Column 4 of A231651

Examples

			Some solutions for n=3
..1..1..1..1....1..0..0..2....2..1..0..0....0..1..2..1....1..0..0..2
..0..0..2..2....0..0..0..1....0..0..0..0....0..0..0..1....1..0..0..1
..0..0..2..2....0..0..0..1....0..0..2..1....2..0..0..2....1..2..0..0
		

A231648 Number of nX5 0..2 arrays with no element less than a strict majority of its horizontal and vertical neighbors.

Original entry on oeis.org

51, 1189, 61574, 2412274, 96014413, 3936913977, 161357952814, 6602715583511, 270337779895196, 11069019817530645, 453147169968161944, 18550832129905355953, 759448690449540291323, 31091056859424132422442
Offset: 1

Views

Author

R. H. Hardin, Nov 12 2013

Keywords

Comments

Column 5 of A231651

Examples

			Some solutions for n=3
..0..2..1..0..0....0..0..2..2..2....0..0..0..0..0....0..0..0..0..2
..0..0..0..0..2....1..0..0..0..1....1..2..2..0..2....1..0..0..0..0
..1..0..0..0..0....0..0..2..0..0....1..2..2..0..0....2..2..1..0..0
		

A231649 Number of nX6 0..2 arrays with no element less than a strict majority of its horizontal and vertical neighbors.

Original entry on oeis.org

121, 4040, 490760, 42882766, 3936913977, 374409597564, 35384751611050, 3335789961947404, 314852421269523851, 29721381118553717447, 2805039910196136173308, 264733396758705184183618
Offset: 1

Views

Author

R. H. Hardin, Nov 12 2013

Keywords

Comments

Column 6 of A231651

Examples

			Some solutions for n=3
..2..0..0..0..2..2....0..0..0..0..0..0....0..1..2..2..2..1....2..0..0..0..0..0
..0..0..0..0..0..1....0..2..2..0..0..0....0..1..0..0..0..1....0..0..0..0..0..2
..0..2..0..0..0..1....0..2..2..0..0..2....0..1..0..0..0..2....0..2..2..2..2..2
		

A231650 Number of nX7 0..2 arrays with no element less than a strict majority of its horizontal and vertical neighbors.

Original entry on oeis.org

292, 13560, 3929027, 765163605, 161357952814, 35384751611050, 7673178325424236, 1659606986967401246, 359651366294031374125, 77952234653703371179457, 16890753872192197103219139
Offset: 1

Views

Author

R. H. Hardin, Nov 12 2013

Keywords

Comments

Column 7 of A231651

Examples

			Some solutions for n=3
..0..0..2..2..2..2..2....0..0..2..2..0..0..0....0..0..0..0..2..2..1
..0..0..1..1..0..0..2....0..0..2..2..0..1..2....0..0..0..0..0..0..1
..0..0..0..0..0..0..2....0..0..0..0..0..1..1....0..1..0..0..0..0..1
		

A231644 Number of n X n 0..2 arrays with no element less than a strict majority of its horizontal and vertical neighbors.

Original entry on oeis.org

3, 35, 920, 137961, 96014413, 374409597564, 7673178325424236, 823755531731133088630, 468550736330699430524865279
Offset: 1

Views

Author

R. H. Hardin, Nov 12 2013

Keywords

Comments

Diagonal of A231651

Examples

			Some solutions for n=3
..0..0..0....0..2..1....1..1..2....0..0..1....0..2..0....2..0..0....0..0..0
..0..0..2....0..1..1....0..0..1....2..0..1....0..0..0....1..0..0....0..2..1
..1..1..1....0..1..1....0..0..1....1..0..0....0..0..2....1..2..2....0..0..0
		
Showing 1-7 of 7 results.