A231652 Lesser twin prime p such that p^2-p-2 is the average of a larger twin prime pair.
5, 11, 17, 29, 71, 197, 269, 1277, 1289, 1607, 2027, 2111, 2267, 2687, 3467, 4649, 6359, 6761, 6827, 7877, 9461, 10529, 12917, 13337, 13691, 13829, 13931, 17291, 17579, 20441, 20771, 26249, 29021, 29129, 34589, 34649, 38237, 39239, 44027, 47417, 49547, 51347
Offset: 1
Keywords
Examples
17 is in this sequence because 17 is a lesser twin prime and 17^2 - 17 - 2 is the average of 269 and 271 which is a pair of twin primes.
Links
- Michael G. Kaarhus, Table of n, a(n) for n = 1..10000
- M. G. Kaarhus, newprime.pdf
Crossrefs
Subsequence of A001359.
Programs
-
Maxima
y:0$ p:0$ c:0$ f(p):= p^2-p-2$ for p:5 thru 100000 step 6 do (if(primep(p) and primep(p+2)) then (y:f(p), if(primep(y-1) and primep(y+1)) then (c:c+1, print(c,", ",p,", ", y))));
-
PARI
is(n)=isprime(n^2-n-3) && isprime(n^2-n-1) && isprime(n+2) && isprime(n) && n>3 \\ Charles R Greathouse IV, Nov 12 2013
Comments