cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231655 Triangle T(n, k) read by rows giving number of non-equivalent ways to choose k points in an equilateral triangle grid of side n.

This page as a plain text file.
%I A231655 #18 Mar 23 2020 19:16:13
%S A231655 1,1,1,1,1,1,1,2,4,6,4,2,1,1,3,10,25,41,48,41,25,10,3,1,1,4,22,87,244,
%T A231655 526,870,1110,1110,870,526,244,87,22,4,1,1,5,41,238,1029,3450,9147,
%U A231655 19524,34104,49231,59038,59038,49231,34104,19524,9147,3450,1029,238
%N A231655 Triangle T(n, k) read by rows giving number of non-equivalent ways to choose k points in an equilateral triangle grid of side n.
%C A231655 Number of orbits under dihedral group D_6 of order 6. - _N. J. A. Sloane_, Sep 12 2019
%H A231655 Heinrich Ludwig, <a href="/A231655/b231655.txt">Table of n, a(n) for n = 0..173</a>
%e A231655 Triangle T(n, k) is irregularly shaped: 0 <= k <= n*(n+1)/2+1. The first row corresponds to n = 1, the first column corresponds to k = 0. Rows are palindromic.
%e A231655   1,  1;
%e A231655   1,  1,  1,  1;
%e A231655   1,  2,  4,  6,  4,  2,  1;
%e A231655   1,  3, 10, 25, 41, 48, 41, 25, 10,  3,  1;
%e A231655   ...
%e A231655 There are T(3, 2) = 4 nonisomorphic choices of 2 points (X) in an equilateral triangle grid of side 3:
%e A231655       X       .       .       X
%e A231655      . .     X X     . .     X .
%e A231655     . X .   . . .   X . X   . . .
%Y A231655 Columns k=1..5 are A001399, A227327, A230723, A231653, A231654.
%Y A231655 Cf. A054252, A283113, A289709, A326611.
%K A231655 nonn,tabf
%O A231655 0,8
%A A231655 _Heinrich Ludwig_, Nov 14 2013