cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231691 Cardinalities of the symmetric operad of dotted red and white trees.

This page as a plain text file.
%I A231691 #43 Apr 21 2020 07:38:32
%S A231691 1,6,74,1476,41032,1464672,63865328,3290120832,195537380704,
%T A231691 13169097667584,991181618539136,82450282595311104,7511417235983147008,
%U A231691 743790032122343820288,79541198937597284060672,9136079502141558495310848,1121720442822518015112749056,146607501639123412303738884096,20322509742114322789584125210624,2978025324234142178848508363882496
%N A231691 Cardinalities of the symmetric operad of dotted red and white trees.
%H A231691 Gheorghe Coserea, <a href="/A231691/b231691.txt">Table of n, a(n) for n = 1..300</a>
%H A231691 F. Chapoton, F. Hivert, J.-C. Novelli, <a href="http://arxiv.org/abs/1307.0092">A set-operad of formal fractions and dendriform-like sub-operads</a>, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
%F A231691 E.g.f. A(x) satisfies -A(x) - g(-A(x)) = x where g is the E.g.f. of A052878. - _Gheorghe Coserea_, Jan 18 2017, edited by _Robert Israel_, Sep 27 2018
%F A231691 a(n) ~ sqrt((5 + 7*s + 3*s^2) / (7 + 13*s + 5*s^2)) * n^(n-1) / ((log((1+3*s+s^2)/(1+s))-s)^(n - 1/2) * exp(n)), where s = A060006 - 1 = -1 + (27/2 - 3*sqrt(69)/2)^(1/3)/3 + ((9 + sqrt(69))/2)^(1/3)/3^(2/3). - _Vaclav Kotesovec_, Apr 21 2020
%e A231691 A(x) = x + 6*x^2/2! + 74*x^3/3! + 1476*x^4/4! + 41032*x^5/5! + ...
%p A231691 S:= series(RootOf(y=-x-ln((1+x)/(1+3*x+x^2)),x),y,21):
%p A231691 seq(coeff(S,y,n)*n!,n=1..21); # _Robert Israel_, Sep 27 2018
%t A231691 terms = 20; (CoefficientList[InverseSeries[Log[x^2 + 3x + 1] - Log[1+x] - x + O[x]^(terms+1)], x]*Range[0, terms]!) // Rest (* _Jean-François Alcover_, Sep 16 2018, after _Gheorghe Coserea_ *)
%o A231691 (PARI)
%o A231691 N=21; x = 'x + O('x^N); Vec(serlaplace(serreverse(log(x^2+3*x+1) - log(1+x) - x))) \\ _Gheorghe Coserea_, Jan 18 2017
%Y A231691 Cf. A052878, A231690.
%K A231691 nonn
%O A231691 1,2
%A A231691 _N. J. A. Sloane_, Nov 14 2013
%E A231691 Offset changed and more terms from _Gheorghe Coserea_, Jan 15 2017