This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231714 #11 Mar 04 2020 20:19:21 %S A231714 0,1,0,1,2,0,2,1,1,0,2,3,1,2,0,3,2,2,1,1,0,1,2,2,3,3,4,0,2,1,3,2,4,3, %T A231714 1,0,2,3,1,2,2,3,1,2,0,3,2,2,1,3,2,2,1,1,0,3,4,2,3,1,2,2,3,1,2,0,4,3, %U A231714 3,2,2,1,3,2,2,1,1,0,2,3,3,4,4,5,1,2,2,3,3,4,0,3,2,4,3,5,4,2,1,3,2,4,3,1,0,3,4,2,3,3,4,2,3,1,2,2,3,1,2,0 %N A231714 Lower triangular region of A231713; A triangular table read by rows: T(n,k) = sum of absolute values of digit differences in the factorial base representations (A007623) of n and k, where (n, k) = (0,0), (1,0), (1,1), (2,0), (2,1), (2,2), ..., n >= 0 and (0 <= k <= n). %H A231714 Antti Karttunen, <a href="/A231714/b231714.txt">Rows n = 0..120 of triangle, flattened</a> %F A231714 a(n) = A231713(A003056(n),A002262(n)). [As a sequence, this is obtained by taking a subsection from array A231713.] %F A231714 T(n,0) = A034968(n). [The leftmost column] %F A231714 Each entry T(n,k) >= A230417(n,k). %e A231714 This triangular table begins as: %e A231714 0; %e A231714 1, 0; %e A231714 1, 2, 0; %e A231714 2, 1, 1, 0; %e A231714 2, 3, 1, 2, 0; %e A231714 3, 2, 2, 1, 1, 0; %e A231714 1, 2, 2, 3, 3, 4, 0; %e A231714 2, 1, 3, 2, 4, 3, 1, 0; %e A231714 ... %e A231714 Please see A231713 for examples how the terms are computed. %o A231714 (Scheme) %o A231714 (define (A231714 n) (A231713bi (A003056 n) (A002262 n))) %o A231714 (define (A231713bi x y) (let loop ((x x) (y y) (i 2) (d 0)) (cond ((and (zero? x) (zero? y)) d) (else (loop (floor->exact (/ x i)) (floor->exact (/ y i)) (+ i 1) (+ d (abs (- (modulo x i) (modulo y i))))))))) %Y A231714 The leftmost column: A034968. %Y A231714 This is a lower, or equivalently, an upper triangular subregion of symmetric square array A231713. Cf. A230417. %K A231714 nonn,base,tabl %O A231714 0,5 %A A231714 _Antti Karttunen_, Nov 12 2013