This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231722 #21 Aug 10 2014 07:06:22 %S A231722 0,1,3,7,23,55,247,1015,5623,24055,208375,945655,9793015,62877175, %T A231722 487550455,3884936695,58243116535,384392195575,6255075618295, %U A231722 53220543000055,616806151581175,6252662237392375,130241496125238775,1122152167228009975,20960365589283433975 %N A231722 Partial sums of A001088 starting from its second term; a(1)=0, a(n) = A001088(2)+...+A001088(n). %C A231722 a(n+1) gives the index to the last term in each row of A231716. Specifically, for all n>=1, A231716(a(n+1)) = A033312(n+1). %C A231722 a(n) = natural number which is written as the n-th repunit in "totient phi number system": 0, 1, 10, 11, 100, 101, 110, 111, 200, 201, 210, 211, 300, 301, 310, 311, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 1200, ..., and so on. Note how the 1st, the 3rd, the 7th and 23rd terms of this list are 1, 11, 111, and 1111. %C A231722 In this number system the i-th digit from right (the least significant digit = digit_0) may contain integers in range 0..A000010(i+3)-1, and the value of the number is obtained as sum_{i=0..} digit_i * A001088(i+2). %H A231722 Vincenzo Librandi, <a href="/A231722/b231722.txt">Table of n, a(n) for n = 1..200</a> %F A231722 a(n) = A231721(n)-1. [The terms are one less than the partial sums of "phitorials", A001088, cumulatively summed from their first term] %p A231722 with(numtheory): A231722:=n->add(product(phi(k), k=1..i), i=2..n): seq(A231722(n), n=1..20); # _Wesley Ivan Hurt_, Aug 09 2014 %t A231722 Table[Sum[Product[EulerPhi[k], {k, i}], {i, 2, n}], {n, 20}] (* _Wesley Ivan Hurt_, Aug 09 2014 *) %o A231722 (Scheme) %o A231722 (define (A231722 n) (- (A231721 n) 1)) %o A231722 (PARI) a(n) = sum(i=2, n, prod(k=1, i, eulerphi(k))); \\ _Michel Marcus_, Aug 09 2014 %Y A231722 One less than A231721. %Y A231722 Cf. A000010 (Euler's totient function phi), A001088 (its partial products, "phitorials"), A231716, A033312. %K A231722 nonn %O A231722 1,3 %A A231722 _Antti Karttunen_, Nov 27 2013