A231728 Triangular array read by rows: row n shows the coefficients of the polynomial u(n) = c(0) + c(1)*x + ... + c(2n)*x^(2n) which is the numerator of the n-th convergent of the continued fraction [k, k, k, ... ], where k = (x^2 + 1)/(x + 1).
1, 0, 1, 2, 2, 3, 0, 1, 3, 4, 7, 4, 5, 0, 1, 5, 10, 19, 16, 16, 6, 7, 0, 1, 8, 20, 42, 48, 55, 36, 29, 8, 9, 0, 1, 13, 40, 94, 132, 164, 138, 119, 64, 46, 10, 11, 0, 1, 21, 76, 197, 324, 451, 464, 439, 304, 219, 100, 67, 12, 13, 0, 1, 34, 142, 405, 760, 1170
Offset: 1
Examples
First 3 rows: 1 . . . 0 . . . 1 2 . . . 2 . . . 3 . . . 0 . . . 1 3 . . . 4 . . . 7 . . . 4 . . . 5 . . . 0 . . . 1 First 3 polynomials: 1 + x^2, 2 + 2*x + 3*x^2 + x^4.
Programs
-
Mathematica
t[n_] := t[n] = Table[(1 + x^2)/(1 + x), {k, 0, n}]; b = Table[Factor[Convergents[t[n]]], {n, 0, 10}]; p[x_, n_] := p[x, n] = Last[Expand[Numerator[b]]][[n]]; u = Table[p[x, n], {n, 1, 10}] v = CoefficientList[u, x]; Flatten[v]
Comments