cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A231747 Number of n X 2 0..2 arrays with no element less than a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors.

Original entry on oeis.org

3, 15, 51, 186, 687, 2485, 9068, 33308, 121445, 444183, 1626731, 5949198, 21774916, 79713938, 291767058, 1068145321, 3910543065, 14316731138, 52417430039, 191916565888, 702674552025, 2572785049162, 9420099176524, 34491356066515
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2013

Keywords

Examples

			Some solutions for n=7:
..1..0....2..2....0..2....0..0....1..0....2..1....0..0....0..0....2..0....0..2
..0..0....1..1....0..0....0..0....0..0....0..0....0..0....0..0....0..0....0..0
..0..0....1..1....0..0....0..0....0..0....0..0....0..1....1..2....0..0....0..0
..0..0....1..1....2..1....1..1....0..0....0..0....0..0....1..1....0..2....0..1
..1..2....2..1....0..0....2..1....1..1....0..0....0..0....1..2....0..0....0..2
..1..1....2..1....0..0....1..1....1..1....2..0....2..1....1..1....0..0....0..0
..1..1....1..1....1..0....1..2....1..1....0..0....1..1....1..2....0..2....0..2
		

Crossrefs

Column 2 of A231753.

Formula

Empirical: a(n) = 3*a(n-1) + 3*a(n-2) + 14*a(n-3) - 39*a(n-4) - 45*a(n-5) - 124*a(n-6) + 18*a(n-7) + 132*a(n-8) + 248*a(n-9) + 112*a(n-10) + 64*a(n-11).
Empirical g.f.: x*(3 + 6*x - 3*x^2 - 54*x^3 - 117*x^4 - 128*x^5 - 16*x^6 + 386*x^7 + 348*x^8 + 224*x^9 + 64*x^10) / (1 - 3*x - 3*x^2 - 14*x^3 + 39*x^4 + 45*x^5 + 124*x^6 - 18*x^7 - 132*x^8 - 248*x^9 - 112*x^10 - 64*x^11). - Colin Barker, Sep 30 2018

A231748 Number of nX3 0..2 arrays with no element less than a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors.

Original entry on oeis.org

9, 51, 589, 5106, 41288, 397219, 3745096, 34036486, 313782748, 2927905037, 27164864918, 251564198963, 2335778916642, 21695352159535, 201366887006680, 1869228803618176, 17356005419910937, 161143681489604094
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2013

Keywords

Comments

Column 3 of A231753

Examples

			Some solutions for n=5
..0..0..0....0..1..1....2..0..0....2..0..0....0..0..0....0..0..2....0..1..2
..1..0..1....0..0..0....2..0..0....0..0..2....0..0..0....1..0..0....0..0..1
..0..2..2....2..0..0....0..1..1....0..0..2....0..2..2....1..1..0....0..0..2
..0..0..1....0..0..2....0..0..1....0..0..1....2..0..2....2..0..2....2..0..1
..2..0..0....0..1..1....0..0..1....1..0..0....0..0..0....0..0..0....0..0..0
		

Formula

Empirical: a(n) = 9*a(n-1) -10*a(n-2) +205*a(n-3) -343*a(n-4) -3172*a(n-5) -8106*a(n-6) -19608*a(n-7) -86820*a(n-8) +105508*a(n-9) -250613*a(n-10) +525498*a(n-11) +3710627*a(n-12) +6249063*a(n-13) +11770795*a(n-14) -927423*a(n-15) -28037328*a(n-16) -60164511*a(n-17) -139179633*a(n-18) -217274117*a(n-19) -213592727*a(n-20) -140322482*a(n-21) +154891348*a(n-22) +398534065*a(n-23) +772218755*a(n-24) +811574834*a(n-25) +702028305*a(n-26) +477484534*a(n-27) -54847598*a(n-28) -371753704*a(n-29) -646008553*a(n-30) -754680367*a(n-31) -605925622*a(n-32) -423754908*a(n-33) -245157008*a(n-34) -118738252*a(n-35) -48930960*a(n-36) -12367856*a(n-37) -4600192*a(n-38) -2156032*a(n-39) -279552*a(n-40) for n>41

A231749 Number of nX4 0..2 arrays with no element less than a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors.

Original entry on oeis.org

22, 186, 5106, 101517, 1787168, 36596191, 764681711, 15421779553, 309633476778, 6284893573378, 127697430555401, 2587148736974819, 52408991398868709, 1062536884554302876, 21542235015238071587, 436659223538195787389
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2013

Keywords

Comments

Column 4 of A231753

Examples

			Some solutions for n=4
..0..0..1..1....0..0..0..2....2..2..2..0....2..2..1..2....0..0..2..1
..1..0..0..1....1..0..0..0....0..0..0..0....0..0..0..0....0..0..0..1
..2..0..0..2....0..0..0..2....0..0..0..0....0..0..0..0....0..0..0..0
..1..1..0..0....0..0..2..2....0..1..2..0....1..0..2..2....1..1..1..0
		

A231750 Number of nX5 0..2 arrays with no element less than a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors.

Original entry on oeis.org

51, 687, 41288, 1787168, 67411714, 2966010838, 131956285636, 5669387332934, 243573416110820, 10555475178328001, 457172040211929179, 19760692150060588600, 854390327504135396722, 36958540950287007144750
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2013

Keywords

Comments

Column 5 of A231753

Examples

			Some solutions for n=3
..2..1..2..0..0....1..0..0..0..1....1..0..2..1..1....1..1..1..0..0
..1..0..0..0..1....0..0..2..0..0....0..0..0..0..2....0..0..0..1..0
..0..0..0..0..0....0..2..2..2..0....0..0..0..0..0....0..0..1..0..0
		

A231751 Number of nX6 0..2 arrays with no element less than a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors.

Original entry on oeis.org

121, 2485, 397219, 36596191, 2966010838, 309458955366, 31638510266609, 3041193156650724, 296576264769131499, 29380275874994459363, 2892477394704091137503, 283798285900590449754004
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2013

Keywords

Comments

Column 6 of A231753

Examples

			Some solutions for n=2
..2..0..2..0..0..0....0..0..0..0..0..0....1..1..1..2..1..2....0..0..1..0..0..2
..0..0..0..1..0..1....0..2..0..0..2..0....2..1..1..1..1..1....2..0..0..0..0..0
		

A231752 Number of nX7 0..2 arrays with no element less than a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors.

Original entry on oeis.org

292, 9068, 3745096, 764681711, 131956285636, 31638510266609, 7467132505589749, 1615073569445439856, 354430510983036028174, 79728003072248618902703, 17808572706541641197645512, 3952770212213173521620797011
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2013

Keywords

Comments

Column 7 of A231753

Examples

			Some solutions for n=2
..2..0..0..0..2..0..0....0..0..0..0..0..0..1....0..2..0..1..2..0..0
..2..0..0..0..0..0..1....2..0..0..0..0..0..2....0..0..0..0..0..0..0
		
Showing 1-6 of 6 results.