A231759 Number of (n+1)X(3+1) 0..1 arrays with no element having a strict majority of its horizontal, diagonal and antidiagonal neighbors equal to one.
100, 625, 5041, 40000, 303601, 2353156, 18318400, 141681409, 1096603225, 8501393209, 65862549769, 510117350625, 3952044600625, 30617619155761, 237184671441601, 1837438830737449, 14234617914330724, 110274092537986624
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..0..0....1..0..1..1....1..0..0..1....1..0..0..0....1..1..0..0 ..0..0..0..0....0..0..0..1....0..0..0..1....1..1..0..1....0..0..0..1 ..0..1..0..1....1..0..0..1....1..0..0..1....0..0..0..0....0..0..0..1 ..0..0..0..0....1..0..0..0....1..1..1..0....0..0..1..1....0..0..0..0 ..0..0..1..1....0..0..1..0....0..0..0..0....1..1..0..0....0..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 4*a(n-1) +12*a(n-2) +149*a(n-3) +34*a(n-4) -745*a(n-5) -4377*a(n-6) -1298*a(n-7) +13107*a(n-8) +52121*a(n-9) +8083*a(n-10) -86996*a(n-11) -321488*a(n-12) -28134*a(n-13) +269200*a(n-14) +1028451*a(n-15) +72948*a(n-16) -507872*a(n-17) -2031587*a(n-18) -253166*a(n-19) +609639*a(n-20) +2548479*a(n-21) +414970*a(n-22) -482501*a(n-23) -2033465*a(n-24) -288069*a(n-25) +243904*a(n-26) +1017882*a(n-27) +103832*a(n-28) -88438*a(n-29) -327567*a(n-30) -19692*a(n-31) +23162*a(n-32) +69365*a(n-33) +1980*a(n-34) -4140*a(n-35) -9617*a(n-36) -152*a(n-37) +478*a(n-38) +849*a(n-39) +16*a(n-40) -33*a(n-41) -44*a(n-42) -a(n-43) +a(n-44) +a(n-45)
Comments