cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231764 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no element having a strict majority of its horizontal, diagonal and antidiagonal neighbors equal to one.

Original entry on oeis.org

9, 33, 16, 100, 136, 36, 315, 625, 660, 81, 961, 2976, 5041, 3213, 169, 3024, 15625, 38160, 40000, 14989, 361, 9409, 84817, 356409, 493695, 303601, 70927, 784, 29319, 440896, 3453471, 8231161, 5879679, 2353156, 338352, 1681, 91204, 2280000
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2013

Keywords

Comments

Table starts
....9.......33........100...........315.............961...............3024
...16......136........625..........2976...........15625..............84817
...36......660.......5041.........38160..........356409............3453471
...81.....3213......40000........493695.........8231161..........143424652
..169....14989.....303601.......5879679.......175642009.........5493044921
..361....70927....2353156......71884125......3855664836.......216545491864
..784...338352...18318400.....893571840.....85629975876......8624298007460
.1681..1603633..141681409...10965349591...1881009507001....340129511751843
.3600..7596720.1096603225..134407778400..41320353904281..13416072442152345
.7744.36066272.8501393209.1654812479232.910635938795025.530629269304561623

Examples

			Some solutions for n=3 k=4
..0..1..0..1..1....1..1..1..0..1....0..0..0..0..1....0..1..1..1..0
..1..0..0..0..0....0..0..0..1..0....0..0..1..0..0....0..0..1..0..0
..1..0..0..0..1....0..0..0..0..0....0..0..0..1..1....1..0..0..0..0
..1..0..0..0..0....0..0..0..0..0....1..1..0..0..1....1..0..0..1..1
		

Crossrefs

Column 1 is A207170 for n>1

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4) -a(n-5) -a(n-6)
k=2: [order 21]
k=3: [order 45]
Empirical for row n:
n=1: a(n) = 3*a(n-1) +a(n-3) +7*a(n-4) -20*a(n-5) -2*a(n-6) -4*a(n-8) +8*a(n-9)
n=2: [order 36]