A231765 Number of (1+1) X (n+1) 0..1 arrays with no element having a strict majority of its horizontal, diagonal and antidiagonal neighbors equal to one.
9, 33, 100, 315, 961, 3024, 9409, 29319, 91204, 284279, 885481, 2758192, 8590761, 26760591, 83356900, 259648623, 808776721, 2519272112, 7847302225, 24443615655, 76139572356, 237167776135, 738755721081, 2301155717168, 7167887098681
Offset: 1
Keywords
Examples
Some solutions for n=7: ..0..0..0..0..0..1..0..0....1..0..0..0..0..1..0..0....0..1..1..0..0..1..0..0 ..0..1..0..0..1..0..1..0....1..1..0..0..0..0..0..0....0..0..0..1..0..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 1 of A231764.
Formula
Empirical: a(n) = 3*a(n-1) + a(n-3) + 7*a(n-4) - 20*a(n-5) - 2*a(n-6) - 4*a(n-8) + 8*a(n-9).
Empirical g.f.: x*(9 + 6*x + x^2 + 6*x^3 - 80*x^4 - 10*x^5 - 8*x^7 + 32*x^8) / ((1 - 3*x - x^2 + 2*x^3)*(1 + x^2 - 6*x^4 - 4*x^6)). - Colin Barker, Oct 01 2018