cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231765 Number of (1+1) X (n+1) 0..1 arrays with no element having a strict majority of its horizontal, diagonal and antidiagonal neighbors equal to one.

Original entry on oeis.org

9, 33, 100, 315, 961, 3024, 9409, 29319, 91204, 284279, 885481, 2758192, 8590761, 26760591, 83356900, 259648623, 808776721, 2519272112, 7847302225, 24443615655, 76139572356, 237167776135, 738755721081, 2301155717168, 7167887098681
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2013

Keywords

Examples

			Some solutions for n=7:
..0..0..0..0..0..1..0..0....1..0..0..0..0..1..0..0....0..1..1..0..0..1..0..0
..0..1..0..0..1..0..1..0....1..1..0..0..0..0..0..0....0..0..0..1..0..0..1..0
		

Crossrefs

Row 1 of A231764.

Formula

Empirical: a(n) = 3*a(n-1) + a(n-3) + 7*a(n-4) - 20*a(n-5) - 2*a(n-6) - 4*a(n-8) + 8*a(n-9).
Empirical g.f.: x*(9 + 6*x + x^2 + 6*x^3 - 80*x^4 - 10*x^5 - 8*x^7 + 32*x^8) / ((1 - 3*x - x^2 + 2*x^3)*(1 + x^2 - 6*x^4 - 4*x^6)). - Colin Barker, Oct 01 2018