A231766 Number of (2+1)X(n+1) 0..1 arrays with no element having a strict majority of its horizontal, diagonal and antidiagonal neighbors equal to one.
16, 136, 625, 2976, 15625, 84817, 440896, 2280000, 11902500, 62359187, 325513764, 1697812287, 8864034201, 46293362688, 241690224400, 1261713925692, 6587266165489, 34392457554368, 179559008401369, 937448116348715
Offset: 1
Keywords
Examples
Some solutions for n=6 ..0..0..0..0..1..1..0....0..0..0..1..1..0..0....0..1..1..0..0..0..1 ..0..0..0..1..0..0..0....0..0..0..1..0..0..1....1..0..0..1..0..0..0 ..1..1..0..0..1..0..1....1..1..0..0..1..0..0....0..0..0..0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 4*a(n-1) +25*a(n-3) +92*a(n-4) -199*a(n-5) -51*a(n-6) -940*a(n-7) -2001*a(n-8) +1652*a(n-9) -54*a(n-10) +6797*a(n-11) +11789*a(n-12) -5313*a(n-13) +1302*a(n-14) -17859*a(n-15) -25925*a(n-16) +7454*a(n-17) -951*a(n-18) +18218*a(n-19) +22763*a(n-20) -3531*a(n-21) +270*a(n-22) -7326*a(n-23) -8414*a(n-24) +641*a(n-25) -33*a(n-26) +1169*a(n-27) +1281*a(n-28) -43*a(n-29) +3*a(n-30) -67*a(n-31) -71*a(n-32) +a(n-33) +a(n-35) +a(n-36)
Comments