This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231814 #18 Mar 24 2023 17:01:53 %S A231814 6,15,30,91,703,1891,2701,12403,18721,38503,49141,51319,79003,88831, %T A231814 104653,146611,188191,218791,226801,269011,286903,385003,497503, %U A231814 597871,665281,721801,736291,765703,873181,954271,1056331,1314631,1373653,1537381,1755001,1869211 %N A231814 Squarefree numbers (from A005117) with prime divisors in a 2p-1 progression. %C A231814 Squarefree numbers with k >= 2 prime factors of the form p_1 * p_2 * ... * p_k, where p_1 < p_2 < ... < p_k = primes with p_k = 2 * p_(k-1) - 1. %C A231814 Each of these numbers is divisible by the arithmetic mean of its proper divisors. %C A231814 Supersequence of A129521 (numbers of the form p*q, p and q prime with q=2*p-1; see A005382 and A005383). %H A231814 Robert Israel, <a href="/A231814/b231814.txt">Table of n, a(n) for n = 1..10000</a> %e A231814 51319 = 19*37*73 where 37 = 2*19 - 1, 73 = 2*37 - 1. %p A231814 N:= 10^7: # for terms <= N %p A231814 p:= 1: S:= NULL: count:= 0: %p A231814 do %p A231814 p:= nextprime(p); %p A231814 if p*(2*p-1) > N then break fi; %p A231814 q:= p; x:= p; %p A231814 do %p A231814 q:= 2*q-1; %p A231814 if not isprime(q) then break fi; %p A231814 x:= x*q; %p A231814 if x > N then break fi; %p A231814 S:= S,x; count:= count+1; %p A231814 od; %p A231814 od: %p A231814 sort([S]); # _Robert Israel_, Mar 24 2023 %t A231814 geomQ[lst_] := Module[{x = lst - 1}, x = x/x[[1]]; Log[2, x] + 1 == Range[Length[x]]]; Select[Range[2, 1000000], ! PrimeQ[#] && SquareFreeQ[#] && geomQ[Transpose[FactorInteger[#]][[1]]] &] (* _T. D. Noe_, Nov 14 2013 *) %Y A231814 Cf. A000040, A005117, A005382, A005383, A129521, A231815, A231816. %Y A231814 Cf. A057330 (first prime for such numbers that has n factors). %K A231814 nonn %O A231814 1,1 %A A231814 _Jaroslav Krizek_, Nov 13 2013