cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231839 T(n,k)=Number of nXk 0..3 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

4, 4, 16, 16, 50, 64, 50, 188, 422, 256, 144, 760, 4508, 3823, 1024, 422, 3309, 52411, 111621, 34350, 4096, 1268, 14666, 678660, 3477361, 2836554, 308419, 16384, 3823, 64607, 8887871, 124132900, 241961326, 71178861, 2771101, 65536, 11472, 283479
Offset: 1

Views

Author

R. H. Hardin, Nov 14 2013

Keywords

Comments

Table starts
.......4..........4.............16.................50....................144
......16.........50............188................760...................3309
......64........422...........4508..............52411.................678660
.....256.......3823.........111621............3477361..............124132900
....1024......34350........2836554..........241961326............24188209253
....4096.....308419.......71178861........16599585680..........4666623161419
...16384....2771101.....1792092360......1140658285204........899426070636904
...65536...24892609....45099279326.....78428361897720.....173546274977761257
..262144..223618304..1134900171250...5390322528656652...33474310504831841795
.1048576.2008825312.28560684486812.370517687958114665.6456965889651937136227

Examples

			Some solutions for n=3 k=4
..3..2..2..2....2..2..3..2....2..2..0..0....3..3..1..0....0..0..0..3
..0..0..3..0....2..3..2..2....3..0..0..1....2..1..0..0....0..0..1..1
..0..0..0..1....2..2..2..3....1..2..2..2....1..1..1..2....2..2..2..2
		

Crossrefs

Column 1 is A000302
Row 1 is A203094 for n>1

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1)
k=2: a(n) = 4*a(n-1) +34*a(n-2) +86*a(n-3) +91*a(n-4) +46*a(n-5) +11*a(n-6) +a(n-7)
k=3: [order 10] for n>11
k=4: [order 29] for n>30
k=5: [order 82] for n>83
Empirical for row n:
n=1: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7) for n>8
n=2: [order 31] for n>32