cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231846 Polynomials for total Pontryagin classes. Refinement of double Pochhammer triangle.

This page as a plain text file.
%I A231846 #68 Feb 19 2024 12:11:00
%S A231846 1,1,2,1,8,6,1,48,32,12,12,1,384,240,160,80,60,20,1,3840,2304,1440,
%T A231846 640,720,960,120,160,180,30,1,46080,26880,16128,13440,8064,10080,4480,
%U A231846 3360,1680,3360,840,280,420,42,1,645120,368640,215040,172032,80640,107520,129024,107520,40320,35840,21504,40320,17920,26880,1680,3360,8960,3360,448,840,56,1
%N A231846 Polynomials for total Pontryagin classes. Refinement of double Pochhammer triangle.
%C A231846 The W. Lang link in A036039 explicitly gives the first several cycle index polynomials for the symmetric group S_n, or the partition polynomials for the refined Stirling numbers of the first kind. In line with the discussion in the Fecko link, null the indeterminates with odd indices, divide the 2n-th partition polynomial by the double factorial of odd numbers given in A001147, and re-index. The sum of the resulting row coefficients are also equal to A001147.
%H A231846 M. Coffey, <a href="https://doi.org/10.1016/j.cam.2003.09.003">Relations and positivity results for derivatives of the Riemann xi function</a>, J. Comput. Appl. Math. 166(2) (2004), 525-534.
%H A231846 Tom Copeland, <a href="https://tcjpn.wordpress.com/2020/10/08/appells-and-roses-newton-leibniz-euler-riemann-and-symmetric-polynomials/">Appells and Roses: Newton, Leibniz, Euler, Riemann and Symmetric Polynomials</a>, 2020.
%H A231846 M. Fecko, <a href="http://sophia.dtp.fmph.uniba.sk/~fecko/referaty/regensburg_2011.pdf">Selected topological concepts used in physics</a> pp. 37-41 and 56-58.
%H A231846 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/questions/3693429/sums-of-reciprocals-of-powers-of-the-imaginary-part-of-the-nontrivial-zeros-of-t">Sums of the reciprocals of powers of the imaginary part of the nontrivial Riemann zeros</a>, a MSE question posed by T. Copeland and answered by G. Helms, 2020.
%H A231846 Wikipedia, <a href="http://en.wikipedia.org/wiki/Pontryagin_class">Pontryagin class</a>
%H A231846 Y. Zhang, <a href="http://www.lepp.cornell.edu/~yz98/notes/A brief introduction to characteristic classes from the differentiable viewpoint.pdf">A brief introduction to characteristic classes from the differentiable viewpoint</a> p. 27.
%F A231846 From _Tom Copeland_, Oct 11 2016: (Start)
%F A231846 A generating function for the polynomials PB_n[b_2,b_4,..,b_(2n)] of this array is
%F A231846 exp[b_2 y^2/2 + b_4 y^4/4 + b_6 y^6/6 + ...] = Sum_{n >= 0} PB_n y^(2n) / A000165(n) = Sum_{n >= 0} St1[2n,0,b_2,0,b_4,0,..,b_(2n)] y^(2n) / (2n)! = Sum_{n >= 0} PB_n *(y/sqrt(2))^(2n) / n! with b_n = Tr(F^n), as in the examples, and St1(n,b_1,b_2,..,b_n), the partition polynomials of A036039. Then St1[2n,0,b_2,0,b_4,..,0,b_(2n)] = A001147(n) * PB_n.
%F A231846 The polynomials PC_n(c_1,c_2,..,c_n) of this array with c_k = b_(2k) are an Appell sequence in the indeterminate c_1 with lowering operator L = d/d(c_1), i.e., L*PC_n(c_1,..,c_n) = d(PC_n)/d(c_1) = n * PC_(n-1)[c_1,..,c_(n-1)].
%F A231846 With [PC.(c_1,c_2,..)]^n = PC_n(c_1,..,c_n), the e.g.f. is G(t,c_1,c_2,..) = exp[t*PC.(0,c_2,c_3,..)] * exp(t*c_1) = exp{t*[c_1 + PC.(0,c_2,c_3,..)]} = exp[t*PC.(c_1,c_2,..)] = exp[(1/2) * sum_{n > 0} c_n (2t)^n/n ] = exp[-log(1-2c.t) / 2], where, umbrally, (c.)^n = c_n.
%F A231846 The raising operator is R = d[log(G(L,c_1,c_2,..))]/dL = sum_{n >= 0} 2^n * c_(n+1) * (d/dc_1)^n = c./(1-2c.L), umbrally. R PC_n(c_1,..,c_n) = P_(n+1)[c_1,..,c_(n+1)].
%F A231846 Another generator: G(L,0,c_2,c_3,..) (c_1)^n = PC_n(c_1,c_2,..,c_n).
%F A231846 The Appell umbral compositional inverse sequence UPC_n to the PC_n sequence has e.g.f. UG(t,c_1,c_2,..) = [1 / G(t,0,c_2,c_3,..)] *  exp(t*c_1) with lowering operator L, as above, and raising operator RU = c_1 - sum_{n > 0} 2^n * c_(n+1) * (d/dc_1)^n. It follows that UPC_n(c_1,c_2,..,c_n) = PC_n(c_1,-c_2,..,-c_n) and PC_n(PC.(c_1,c_2,..),-c_2,-c_3,..) = PC_n(PC.(c_1,-c_2,-c_3,..),c_2,c_3,..) = (c_1)^n, e.g., PC_2(PC.(c_1,-c_2,..),c_2) = 2 c_2 + (PC.(c_1,-c_2,..))^2 = 2 c_2 + PC_2(c_1,-c_2) = 2 c_2 + 2 (-c_2) + (c_1)^2 = (c_1)^2.
%F A231846 Letting c_1 = x and all other c_n = 1 gives the row polynomials of A055140.
%F A231846 (End)
%e A231846 In terms of the trace of a curvature form Tr(F^n)={n} or indeterminates c_n=[n]:
%e A231846 P_0 = 1,
%e A231846 P_1 = Tr(F^2) = {2}
%e A231846     = c_1 = [1],
%e A231846 P_2 = 2Tr(F^4)+Tr(F^2)^2 = 2{4}+{2}^2
%e A231846     = 2c_2+ (c_1)^2 = 2[2]+[1]^2,
%e A231846 P_3 = 8Tr(F^6)+6Tr(F^2)Tr(F^4)+Tr(F^2)^3= 8{6}+6{2}{4}+{2}^3
%e A231846     = 8c_3+6c_1 c_2+(c_1)^3 = 8[3]+6[1][2]+[1]^3,
%e A231846 P_4 = 48{8}+32{2}{6}+12{4}^2+12{2}^2{4}+{2}^4
%e A231846     = 48[4]+32[1][3]+12[2]^2+12[1]^2[2]+[1]^4,
%e A231846 P_5 = 384{10}+240{2}{8}+160{4}{6}+80{2}^2{6}
%e A231846       + 60{2}{4}^2+20{2}^3{4}+{2}^5
%e A231846     = 384[5]+240[1][4]+160[2][3]+80[1]^2[3]
%e A231846       + 60[1][2]^2+20[1]^3[2]+[1]^5
%e A231846 P_6 = 3840[6]+2304[1][5]+1440[2][4]+640[3]^2+720[1]^2[4]
%e A231846   +960[1][2][3]+120[2]^3+160[1]^3[3]+180[1]^2[2]^2+30[1]^4[2]+[1]^6
%e A231846 P_7 = 46080[7]+26880[1][6]+16128[2][5]+13440[3][4]+8064[1]^2[5]
%e A231846   +10080[1][2][4]+4480[1][3]^2+3360[2]^2[3]+1680[1]^3[4]
%e A231846   +3360[1]^2[2][3]+840[1][2]^3+280[1]^4[3]+420[1]^3[2]^2+42[1]^5[2]+[1]^7
%e A231846 ....
%e A231846 Summing over partitions with the same number of blocks gives the unsigned double Pochhammer triangle A039683. Row sums are A001147. Multiplying P_n by the row sum gives the 2n-th partition polynomial of A036039 with its odd-indexed indeterminates nulled.
%e A231846 For c_1 = c_2 = x and c_n = 0 otherwise, see A119275. Let Omega(t) = xi(1/2 + i*t)/xi(1/2) where xi is the Landau version of the Riemann xi function, t is real, and i^2 = -1. The Taylor series coefficients vanish for odd order derivatives and, for even, are c_(2n) = Omega^(2n)(0) = (-1)^n * xi^(2n)(1/2) / xi(1/2) = A001147(n) * P_n as in the Example section with F^(2n) = -2 * Sum(1/x_k^(2n)) = -2 * Tr_(2n) where x_k is the imaginary part of the k-th zero of the Riemann zeta function and k ranges over all the zeros above the real axis. E.g., (see the Mathematics Stack Exchange question) summing over the first several thousands of zeros, c_4 = A001147(2)*P_2 = 3*[2*(-2*Tr_4) + (-2*Tr_2)^2] = 12*[-(0.000372) + (0.02311)^2] = .005962 and c_4 = xi^(4)*(1/2)/xi(1/2) = 0.002963/0.497 = 0.005962 (rounding off). Conversely, the Tr_(2n) can be calculated from the c_n using the Faber polynomials (A263916), as indicated in A036039. See Coffey for Taylor coefficients of Omega(t) about t = 0 and the MSE question for Tr_(2n). The traces are convergent and any zeros in the critical strip off the critical line would have a slightly more complicated real contribution to the traces but negligible to any practical order. - _Tom Copeland_, May 27 2020
%t A231846 rows[n_] := {{1}}~Join~With[{s = Exp[Sum[b[k] t^k/(2 k), {k, n}] + O[t]^(n+1)]}, Table[Expand@Coefficient[(2 k)!! s, t^k Product[b[t], {t, p}]], {k, n}, {p, Sort[Sort /@ IntegerPartitions[k]]}]];
%t A231846 rows[8] // Flatten (* _Andrey Zabolotskiy_, Feb 19 2024 *)
%Y A231846 Cf. A000165, A001147, A036039, A055140, A119275.
%Y A231846 Cf. A263916.
%Y A231846 The terms are indexed by partitions in the Abramowitz and Stegun order, A036036.
%K A231846 nonn,tabf
%O A231846 0,3
%A A231846 _Tom Copeland_, Nov 14 2013
%E A231846 Polynomials P_6 and P_7 added by _Tom Copeland_, Oct 11 2016
%E A231846 Correction to P_3 in Example by _Tom Copeland_, May 27 2020
%E A231846 Terms in rows 6-7 reordered, row 8 added by _Andrey Zabolotskiy_, Feb 19 2024