A231850 Number of n X 3 0..2 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions).
3, 34, 656, 12404, 234336, 4426924, 83630516, 1579892344, 29846280396, 563836173564, 10651619780176, 201223350436284, 3801378343993156, 71813123491132504, 1356645994919661436, 25628858153744306924
Offset: 1
Keywords
Examples
Some solutions for n=5: ..0..0..1....0..0..1....0..0..1....0..0..2....0..0..2....0..0..0....0..0..0 ..0..2..2....0..1..2....0..1..2....0..2..1....0..2..2....1..1..0....1..2..2 ..0..2..2....0..2..0....0..2..1....0..1..1....2..0..1....0..2..2....0..2..2 ..0..1..2....2..0..1....2..0..1....2..0..2....1..1..0....1..0..0....2..0..1 ..0..0..1....1..2..2....2..2..2....2..2..0....1..0..0....1..0..0....0..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A231855.
Formula
Empirical: a(n) = 21*a(n-1) - 41*a(n-2) + 22*a(n-3) for n>4.
Empirical g.f.: x*(3 - 29*x + 65*x^2 - 44*x^3) / (1 - 21*x + 41*x^2 - 22*x^3). - Colin Barker, Oct 01 2018