cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A231851 Number of nX4 0..2 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions).

Original entry on oeis.org

8, 144, 7339, 360966, 17726611, 870478586, 42745416641, 2099041399895, 103074789422478, 5061554394805698, 248550911791818706, 12205253749015192168, 599346902427518296059, 29431318417158665841585
Offset: 1

Views

Author

R. H. Hardin, Nov 14 2013

Keywords

Comments

Column 4 of A231855

Examples

			Some solutions for n=3
..0..0..2..1....0..0..2..2....0..2..2..1....0..0..2..1....0..0..2..1
..2..2..1..2....1..1..0..0....2..1..1..1....1..1..1..1....1..2..1..1
..0..1..2..2....0..0..0..0....0..0..0..0....1..2..0..0....2..0..2..2
		

Formula

Empirical: a(n) = 62*a(n-1) -697*a(n-2) +3287*a(n-3) -7718*a(n-4) +9336*a(n-5) -5629*a(n-6) +1612*a(n-7) -184*a(n-8) +4*a(n-9) for n>10

A231849 Number of n X n 0..2 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions).

Original entry on oeis.org

1, 8, 656, 360966, 1454768048, 40798265169064, 8071247819035667716, 11185076987915709283036466, 108785685563255533314439981136006, 7419232013005838043632372688640525508734
Offset: 1

Views

Author

R. H. Hardin, Nov 14 2013

Keywords

Comments

Diagonal of A231855

Examples

			Some solutions for n=3
..0..2..1....0..2..2....0..2..1....0..0..0....0..2..2....0..0..2....0..0..0
..2..0..0....2..0..0....2..1..1....1..0..0....2..0..1....1..2..0....1..0..2
..0..1..1....1..1..2....1..1..1....1..2..2....1..2..0....1..1..2....2..2..2
		

A231850 Number of n X 3 0..2 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions).

Original entry on oeis.org

3, 34, 656, 12404, 234336, 4426924, 83630516, 1579892344, 29846280396, 563836173564, 10651619780176, 201223350436284, 3801378343993156, 71813123491132504, 1356645994919661436, 25628858153744306924
Offset: 1

Views

Author

R. H. Hardin, Nov 14 2013

Keywords

Examples

			Some solutions for n=5:
..0..0..1....0..0..1....0..0..1....0..0..2....0..0..2....0..0..0....0..0..0
..0..2..2....0..1..2....0..1..2....0..2..1....0..2..2....1..1..0....1..2..2
..0..2..2....0..2..0....0..2..1....0..1..1....2..0..1....0..2..2....0..2..2
..0..1..2....2..0..1....2..0..1....2..0..2....1..1..0....1..0..0....2..0..1
..0..0..1....1..2..2....2..2..2....2..2..0....1..0..0....1..0..0....0..2..2
		

Crossrefs

Column 3 of A231855.

Formula

Empirical: a(n) = 21*a(n-1) - 41*a(n-2) + 22*a(n-3) for n>4.
Empirical g.f.: x*(3 - 29*x + 65*x^2 - 44*x^3) / (1 - 21*x + 41*x^2 - 22*x^3). - Colin Barker, Oct 01 2018

A231852 Number of nX5 0..2 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions).

Original entry on oeis.org

21, 612, 85288, 11149456, 1454768048, 189801034186, 24762957054535, 3230773305296573, 421512520908365354, 54993894395631067868, 7174943262940390093175, 936100477964636376119044
Offset: 1

Views

Author

R. H. Hardin, Nov 14 2013

Keywords

Comments

Column 5 of A231855

Examples

			Some solutions for n=2
..0..0..0..0..2....0..0..0..1..1....0..2..2..2..2....0..0..0..0..2
..0..0..1..2..2....0..0..1..1..1....1..1..0..0..1....2..1..1..1..1
		

Formula

Empirical: a(n) = 183*a(n-1) -8008*a(n-2) +164477*a(n-3) -1911762*a(n-4) +13545983*a(n-5) -59779265*a(n-6) +159414566*a(n-7) -218855372*a(n-8) +7532104*a(n-9) +451112826*a(n-10) -590711864*a(n-11) +106059884*a(n-12) +386076754*a(n-13) -374591713*a(n-14) +131217119*a(n-15) +37977619*a(n-16) -86897128*a(n-17) +54663372*a(n-18) -17127366*a(n-19) +3057852*a(n-20) -413220*a(n-21) for n>22

A231853 Number of nX6 0..2 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions).

Original entry on oeis.org

55, 2613, 991167, 342945563, 118292347982, 40798265169064, 14071005227913420, 4852980371902817445, 1673755248583159267298, 577265190724597150269824, 199094282646348652645556638, 68666072406587433832844219579
Offset: 1

Views

Author

R. H. Hardin, Nov 14 2013

Keywords

Comments

Column 6 of A231855

Examples

			Some solutions for n=2
..0..0..2..2..2..2....0..0..0..0..1..0....0..0..2..1..1..2....0..0..1..2..2..1
..1..1..0..0..0..1....1..2..2..2..0..0....0..1..1..1..0..0....0..1..2..2..1..1
		

Formula

Empirical recurrence of order 52 (see link above)

A231854 Number of nX7 0..2 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions).

Original entry on oeis.org

144, 11159, 11529929, 10582191628, 9669634711179, 8834385550338284, 8071247819035667716, 7374031793933846572072, 6737043309310397086712007, 6155079609468787512765196641, 5623387483230350498450778517294
Offset: 1

Views

Author

R. H. Hardin, Nov 14 2013

Keywords

Comments

Column 7 of A231855

Examples

			Some solutions for n=2
..0..2..1..0..0..1..2....0..0..0..0..0..0..0....0..2..2..1..0..2..2
..2..1..0..0..1..1..1....0..0..1..0..0..1..2....1..1..1..0..2..2..2
		

A231856 Number of 2 X n 0..2 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions).

Original entry on oeis.org

3, 8, 34, 144, 612, 2613, 11159, 47675, 203696, 870316, 3718550, 15888022, 67883780, 290042861, 1239248291, 5294859950, 22623022401, 96659996189, 412993219856, 1764570725956, 7539372796546, 32213014377497, 137634565007885
Offset: 1

Views

Author

R. H. Hardin, Nov 14 2013

Keywords

Examples

			Some solutions for n=7:
..0..0..0..2..2..2..2....0..2..2..2..2..0..2....0..2..2..1..1..2..2
..1..1..2..2..2..0..1....2..2..2..2..1..1..1....1..1..1..1..0..0..0
		

Crossrefs

Row 2 of A231855.

Formula

Empirical: a(n) = 5*a(n-1) - 2*a(n-2) - 5*a(n-3) - a(n-4) + 10*a(n-5) - 3*a(n-6) - 3*a(n-7) + a(n-8) for n>9.
Empirical g.f.: x*(3 - 7*x + 5*x^3 + 3*x^4 - 11*x^5 + x^6 + 3*x^7 - x^8) / ((1 + x - x^3)*(1 - 6*x + 8*x^2 - 2*x^3 - 3*x^4 + x^5)). - Colin Barker, Oct 01 2018

A231857 Number of 3Xn 0..2 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions).

Original entry on oeis.org

9, 55, 656, 7339, 85288, 991167, 11529929, 134163686, 1561220559, 18167587282, 211412670503, 2460168784055, 28628514590530, 333144562652494, 3876739724171184, 45112880641621747, 524969986286019848
Offset: 1

Views

Author

R. H. Hardin, Nov 14 2013

Keywords

Comments

Row 3 of A231855

Examples

			Some solutions for n=4
..0..0..2..2....0..2..2..0....0..2..1..1....0..2..2..1....0..0..0..2
..1..2..2..2....2..2..0..0....2..1..1..2....2..2..0..1....2..2..2..1
..0..1..0..0....1..0..0..0....0..0..0..1....2..0..2..2....1..0..0..0
		

Formula

Empirical: a(n) = 15*a(n-1) -33*a(n-2) -96*a(n-3) +258*a(n-4) +412*a(n-5) -873*a(n-6) -1455*a(n-7) +1110*a(n-8) +4203*a(n-9) +2658*a(n-10) -10249*a(n-11) -12826*a(n-12) +15687*a(n-13) +27224*a(n-14) -12857*a(n-15) -37317*a(n-16) +9206*a(n-17) +17841*a(n-18) +107*a(n-19) +3350*a(n-20) -8989*a(n-21) +583*a(n-22) +8*a(n-23) +12093*a(n-24) -21445*a(n-25) +13211*a(n-26) -2506*a(n-27) +2401*a(n-28) -2357*a(n-29) +397*a(n-30) -8*a(n-31) +70*a(n-32) -32*a(n-33) -10*a(n-34) -4*a(n-35) for n>39

A231858 Number of 4Xn 0..2 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions).

Original entry on oeis.org

27, 377, 12404, 360966, 11149456, 342945563, 10582191628, 326538750032, 10077070157886, 310990560701053, 9597588422538259, 296194800363244561, 9140981229461743667, 282103332885578653809, 8706099363813295026694
Offset: 1

Views

Author

R. H. Hardin, Nov 14 2013

Keywords

Comments

Row 4 of A231855

Examples

			Some solutions for n=3
..0..0..1....0..0..1....0..0..2....0..0..1....0..2..2....0..0..2....0..0..0
..0..1..0....0..1..1....0..2..0....2..2..2....2..2..0....0..1..1....0..0..0
..0..0..0....1..2..1....1..1..0....0..0..2....2..0..1....1..1..0....0..1..2
..1..0..0....0..1..1....2..0..0....1..2..2....2..2..2....0..0..1....2..0..0
		

A231859 Number of 5 X n 0..2 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions).

Original entry on oeis.org

81, 2584, 234336, 17726611, 1454768048, 118292347982, 9669634711179, 790105900385455, 64578303092773705, 5278241081510497850, 431415634830501378047, 35261742427088235238529, 2882118653532747073628155
Offset: 1

Views

Author

R. H. Hardin, Nov 14 2013

Keywords

Comments

Row 5 of A231855.

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..1....0..0..0....0..0..0....0..0..1....0..0..0
..1..0..0....1..2..1....0..2..1....1..0..0....2..1..0....0..2..1....0..1..1
..2..2..0....2..0..0....2..0..2....2..2..2....1..0..0....0..0..0....0..0..0
..1..0..2....2..2..2....1..2..2....0..1..2....0..1..2....0..0..1....1..0..0
..0..1..1....2..2..2....2..2..2....1..1..1....1..0..0....0..2..2....0..0..1
		

Crossrefs

Cf. A231855.
Showing 1-10 of 12 results. Next