A231857 Number of 3Xn 0..2 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions).
9, 55, 656, 7339, 85288, 991167, 11529929, 134163686, 1561220559, 18167587282, 211412670503, 2460168784055, 28628514590530, 333144562652494, 3876739724171184, 45112880641621747, 524969986286019848
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..2..2....0..2..2..0....0..2..1..1....0..2..2..1....0..0..0..2 ..1..2..2..2....2..2..0..0....2..1..1..2....2..2..0..1....2..2..2..1 ..0..1..0..0....1..0..0..0....0..0..0..1....2..0..2..2....1..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 15*a(n-1) -33*a(n-2) -96*a(n-3) +258*a(n-4) +412*a(n-5) -873*a(n-6) -1455*a(n-7) +1110*a(n-8) +4203*a(n-9) +2658*a(n-10) -10249*a(n-11) -12826*a(n-12) +15687*a(n-13) +27224*a(n-14) -12857*a(n-15) -37317*a(n-16) +9206*a(n-17) +17841*a(n-18) +107*a(n-19) +3350*a(n-20) -8989*a(n-21) +583*a(n-22) +8*a(n-23) +12093*a(n-24) -21445*a(n-25) +13211*a(n-26) -2506*a(n-27) +2401*a(n-28) -2357*a(n-29) +397*a(n-30) -8*a(n-31) +70*a(n-32) -32*a(n-33) -10*a(n-34) -4*a(n-35) for n>39
Comments