cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231864 Partial sums of the second power of arithmetic derivative function A003415.

This page as a plain text file.
%I A231864 #15 Nov 21 2013 18:19:27
%S A231864 0,1,2,18,19,44,45,189,225,274,275,531,532,613,677,1701,1702,2143,
%T A231864 2144,2720,2820,2989,2990,4926,5026,5251,5980,7004,7005,7966,7967,
%U A231864 14367,14563,14924,15068,18668,18669,19110,19366,23990,23991,25672,25673,27977,29498
%N A231864 Partial sums of the second power of arithmetic derivative function A003415.
%C A231864 a(n)-> ~ 0.4*n^3 as n-> oo (note: 1^2+2^2+3^3+4^4+5^4 ...-> ~ 1/3*n^3)
%C A231864 Note: the partial sums of a power of the arithmetic derivatives of the natural numbers tend to infinity as the partial sums of the natural numbers of the same power.  In more general sense: sum(D^d(i)^m, i = 1..n) -> k*n^(m+1) as n-> oo where D^d(i) is the derivative of order d th of the natural number i (d may be = 0, i.e. no derivate).
%H A231864 E. J. Barbeau, <a href="http://cms.math.ca/cmb/v4/p117">Remark on an arithmetic derivative</a>, Canad. Math. Bull., vol. 4, no. 2, May 1961, pp. 117-122.
%F A231864 a(n) = sum((i')^2, i=1..n) where i'=A003415.
%e A231864 (1')^2+(2')^2+(3')^2+(4')^2+(5')^2=0+1+1+16+1=19->a(5)=19.
%p A231864 der:=n->n*add(op(2, p)/op(1, p), p=ifactors(n)[2]): seq(add(der(i)^2,i=1..j),j=1..45);
%t A231864 dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; Accumulate[Table[dn[n]^2, {n, 100}]] (* _T. D. Noe_, Nov 20 2013 *)
%Y A231864 Cf. A003415, A190121, A231946
%K A231864 nonn
%O A231864 1,3
%A A231864 _Giorgio Balzarotti_, Nov 14 2013