This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231866 #19 Dec 03 2013 20:46:22 %S A231866 1,1,1,5,53,909,22149,711297,28687833,1405408841,81620841401, %T A231866 5516637014061,427699967681709,37595972586389109,3711295383595024221, %U A231866 408142117923542673737,49663409518409586541937,6647274714312311181770577,973638869018128380202018353 %N A231866 E.g.f. A(x) satisfies: A'(x) = A(x*A'(x)^2) with A(0)=1. %F A231866 E.g.f. satisfies: A(x) = A'(x/A(x)^2). %F A231866 E.g.f. satisfies: A(x) = sqrt( x / Series_Reversion( x*A'(x)^2 ) ). %F A231866 a(n) = [x^(n-1)/(n-1)!] A(x)^(2*n-1)/(2*n-1) for n>=1. %F A231866 a(n) == 1 (mod 4) for n>=0. %e A231866 E.g.f.: A(x) = 1 + x + x^2/2! + 5*x^3/3! + 53*x^4/4! + 909*x^5/5! + 22149*x^6/6! +... %e A231866 such that %e A231866 A(x*A'(x)^2) = A'(x) = 1 + x + 5*x^2/2! + 53*x^3/3! + 909*x^4/4! + 22149*x^5/5! +... %e A231866 The square of the e.g.f. begins: %e A231866 A(x)^2 = 1 + 2*x + 4*x^2/2! + 16*x^3/3! + 152*x^4/4! + 2448*x^5/5! +... %e A231866 To illustrate a(n) = [x^(n-1)/(n-1)!] A(x)^(2*n-1)/(2*n-1), create a table of coefficients of x^k/k!, k>=0, in A(x)^(2*n-1), n>=1, like so: %e A231866 A^1 : [1, 1, 1, 5, 53, 909, 22149, 711297, ...]; %e A231866 A^3 : [1, 3, 9, 39, 333, 5007, 112101, 3395907, ...]; %e A231866 A^5 : [1, 5, 25, 145, 1205, 16065, 326525, 9235165, ...]; %e A231866 A^7 : [1, 7, 49, 371, 3437, 44163, 825741, 21682143, ...]; %e A231866 A^9 : [1, 9, 81, 765, 8181, 108981, 1952469, 47966553, ...]; %e A231866 A^11: [1, 11, 121, 1375, 16973, 243639, 4370069, 102669787, ...]; %e A231866 A^13: [1, 13, 169, 2249, 31733, 498537, 9246861, 213557877, ...]; %e A231866 A^15: [1, 15, 225, 3435, 54765, 945195, 18486525, 430317495, ...]; ... %e A231866 then the diagonal in the above table generates this sequence shift left: %e A231866 [1/1, 3/3, 25/5, 371/7, 8181/9, 243639/11, 9246861/13, 430317495/15, ...]. %o A231866 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+intformal(subst(A, x, x*A'^2 +x*O(x^n)))); n!*polcoeff(A, n)} %o A231866 for(n=0, 25, print1(a(n), ", ")) %o A231866 (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+intformal(sqrt(1/x*serreverse(x/A^2 +x*O(x^n)))));n!*polcoeff(A,n)} %o A231866 for(n=0,25,print1(a(n),", ")) %Y A231866 Cf. A231619, A231899, A232694, A232695, A232696. %K A231866 nonn %O A231866 0,4 %A A231866 _Paul D. Hanna_, Nov 14 2013