cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231883 Number of ways to write n = x + y (x, y > 0) with x^2 + (n-2)*y^2 prime.

Original entry on oeis.org

0, 0, 2, 2, 2, 2, 4, 1, 5, 2, 5, 1, 4, 4, 3, 1, 7, 2, 3, 3, 6, 7, 3, 2, 6, 2, 9, 3, 8, 3, 10, 3, 5, 8, 8, 4, 7, 5, 13, 4, 12, 6, 7, 6, 8, 10, 14, 4, 17, 9, 9, 6, 9, 5, 8, 5, 9, 7, 12, 10, 11, 7, 11, 8, 12, 4, 13, 3, 22, 6, 16, 7, 14, 8, 10, 4, 14, 4, 17, 9, 16, 6, 12, 11, 14, 4, 21, 4, 21, 8, 18, 3, 11, 14, 23, 7, 22, 5, 23, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 21 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 2, and a(n) = 1 only for n = 8, 12, 16. Moreover, if m and n are positive integers with m >= max{2, n-1} and gcd(m, n+1) = 1, then x^2 + n*y^2 is prime for some positive integers x and y with x + y = m, except for the case m = n + 3 = 29.
(ii) Let m and n be integers greater than one with m >= (n-1)/2 and gcd(m, n-1) = 1. Then x + n*y is prime for some positive integers x and y with x + y = m.
(iii) Any integer n > 3 not equal to 12 or 16 can be written as x + y (x, y > 0) with (n-2)*x - y and (n-2)*x^2 + y^2 both prime.

Examples

			 a(8) = 1 since 8 = 5 + 3 with 5^2 + (8-2)*3^2 = 79 prime.
a(12) = 1 since 12 = 11 + 1 with 11^2 + (12-2)*1^2 = 131 prime.
a(16) = 1 since 16 = 15 + 1 with 15^2 + (16-2)*1^2 = 239 prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[x^2+(n-2)*(n-x)^2],1,0],{x,1,n-1}]
    Table[a[n],{n,1,100}]