A231894 Boustrophedon transform of the Catalan numbers A000108.
1, 3, 10, 37, 149, 648, 3039, 15401, 84619, 505500, 3287256, 23250514, 178382427, 1478782490, 13187788246, 125958159631, 1283067859947, 13886218459612, 159124624924418, 1924735353849082, 24506483918914367, 327627501208785322
Offset: 0
Keywords
Examples
G.f. = 1 + 3*x + 10*x^2 +37*x^3 + 149*x^4 + 648*x^5 + 3039*x^6 + 15401*x^7 + ...
Links
- D. Berry, J. Broom, D. Dixon, A. Flaherty, Umbral Calculus and the Boustrophedon Transform, 2013
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
Programs
-
Maple
A000111 := proc(n) option remember; sec(x)+tan(x) ; coeftayl(%,x=0,n)*n! ; end proc: A109449 := proc(n,k) binomial(n,k)*A000111(n-k) ; end proc: A231894 := proc(n) add( A109449(n,k)*A000108(k+1),k=0..n) ; end proc: seq(A231894(n),n=0..30) ; # R. J. Mathar, Oct 04 2014
-
Python
from itertools import accumulate, count, islice def A231894_gen(): # generator of terms blist, c = tuple(), 1 for i in count(1): yield (blist := tuple(accumulate(reversed(blist),initial=c)))[-1] c = c*(4*i+2)//(i+2) A231894_list = list(islice(A231894_gen(),40)) # Chai Wah Wu, Jun 12 2022
Formula
E.g.f.: exp(2*x)*I_1(2*x)*(sec(x)+tan(x))/x, where I_1(2*x) is the modified Bessel function of the first kind. - Sergei N. Gladkovskii, Nov 19 2014
a(n) ~ n! * exp(Pi) * BesselI(1, Pi) * 2^(n+3) / Pi^(n+2). - Vaclav Kotesovec, Jun 12 2015