cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231894 Boustrophedon transform of the Catalan numbers A000108.

Original entry on oeis.org

1, 3, 10, 37, 149, 648, 3039, 15401, 84619, 505500, 3287256, 23250514, 178382427, 1478782490, 13187788246, 125958159631, 1283067859947, 13886218459612, 159124624924418, 1924735353849082, 24506483918914367, 327627501208785322
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2013

Keywords

Examples

			G.f. = 1 + 3*x + 10*x^2 +37*x^3 + 149*x^4 + 648*x^5 + 3039*x^6 + 15401*x^7 + ...
		

Crossrefs

Programs

  • Maple
    A000111 := proc(n)
        option remember;
        sec(x)+tan(x) ;
        coeftayl(%,x=0,n)*n! ;
    end proc:
    A109449 := proc(n,k)
        binomial(n,k)*A000111(n-k) ;
    end proc:
    A231894 := proc(n)
        add( A109449(n,k)*A000108(k+1),k=0..n) ;
    end proc:
    seq(A231894(n),n=0..30) ; # R. J. Mathar, Oct 04 2014
  • Python
    from itertools import accumulate, count, islice
    def A231894_gen(): # generator of terms
        blist, c = tuple(), 1
        for i in count(1):
            yield (blist := tuple(accumulate(reversed(blist),initial=c)))[-1]
            c = c*(4*i+2)//(i+2)
    A231894_list = list(islice(A231894_gen(),40)) # Chai Wah Wu, Jun 12 2022

Formula

a(n) = Sum_{k=0..n} A109449(n,k)*A000108(k+1). - Philippe Deléham, Nov 20 2013
E.g.f.: exp(2*x)*I_1(2*x)*(sec(x)+tan(x))/x, where I_1(2*x) is the modified Bessel function of the first kind. - Sergei N. Gladkovskii, Nov 19 2014
a(n) ~ n! * exp(Pi) * BesselI(1, Pi) * 2^(n+3) / Pi^(n+2). - Vaclav Kotesovec, Jun 12 2015