This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231915 #25 Dec 16 2021 16:50:28 %S A231915 1,0,1,0,2,4,0,21,3,9,0,52,88,40,64,0,305,705,105,5,125,0,7836,2736, %T A231915 4086,2286,2106,2826,0,24703,20293,34993,4711,301,7,5047,0,155688, %U A231915 557488,107472,283872,188224,178816,178368,218688 %N A231915 Number T(n,k) of endofunctions on [n] such that at most k elements with nonempty preimage have equal preimage cardinality and non-equinumerous preimages have cardinalities that differ by at least k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A231915 T(n,k) is defined for n,k >= 0. The triangle contains terms with k <= n. T(n,k) = T(n,n) = A231812(n) for k >= n. %C A231915 T(p,p) = p! + p = A005095(p) for p prime. %C A231915 T(p,p-1) = p for prime p. %H A231915 Alois P. Heinz, <a href="/A231915/b231915.txt">Rows n = 0..140, flattened</a> %e A231915 Triangle T(n,k) begins: %e A231915 1; %e A231915 0, 1; %e A231915 0, 2, 4; %e A231915 0, 21, 3, 9; %e A231915 0, 52, 88, 40, 64; %e A231915 0, 305, 705, 105, 5, 125; %e A231915 0, 7836, 2736, 4086, 2286, 2106, 2826; %e A231915 0, 24703, 20293, 34993, 4711, 301, 7, 5047; %e A231915 ... %p A231915 with(combinat): %p A231915 b:= proc(t, i, u, k) option remember; `if`(t=0, 1, %p A231915 `if`(i<1, 0, b(t, i-1, u, k) +add(multinomial(t, t-i*j, i$j) %p A231915 *b(t-i*j, i-k, u-j, k)*u!/(u-j)!/j!, j=1.. min(k, t/i) ))) %p A231915 end: %p A231915 T:= (n, k)-> b(n$3, k): %p A231915 seq(seq(T(n, k), k=0..n), n=0..11); %t A231915 multinomial[n_, k_List] := n!/Times@@(k!); b[t_, i_, u_, k_] := b[t, i, u, k] = If[t == 0, 1, If[i < 1, 0, b[t, i-1, u, k] + Sum[multinomial[t, Join[{t-i*j}, Array[i&, j]]]*b[t-i*j, i-k, u-j, k]*u!/(u-j)!/j!, {j, 1, Min[k, t/i]}]]]; T[n_, k_] := b[n, n, n, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 11}] // Flatten (* _Jean-François Alcover_, Dec 27 2013, translated from Maple *) %Y A231915 Columns k=0-1 give: A000007, A231807, %Y A231915 Main diagonal gives: A231812. %Y A231915 T(n,n)-T(n,n-1) gives: A000142. %Y A231915 Cf. A005095. %K A231915 nonn,tabl,look %O A231915 0,5 %A A231915 _Alois P. Heinz_, Nov 15 2013