cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231967 Squarefree numbers (A005117) of the form p*q*r with prime factors p, q, r with q = 2*p + 1 and r = 2*q + 1.

This page as a plain text file.
%I A231967 #9 May 26 2016 10:45:58
%S A231967 110,1265,11891,568301,5719229,46203659,371436119,1057570169,
%T A231967 2978731439,8475105539,8777935031,14865764009,22397944469,24460553171,
%U A231967 26008879181,27621202391,47549400491,53960155829,54994829321,57639193331,119010782819,157361958899
%N A231967 Squarefree numbers (A005117) of the form p*q*r with prime factors p, q, r with q = 2*p + 1 and r = 2*q + 1.
%C A231967 Squarefree numbers of the form p*q*r, where p < q < r = primes with q = 2*p + 1 and r = 2*q + 1; that is, r = 4*p + 3.
%H A231967 Harvey P. Dale, <a href="/A231967/b231967.txt">Table of n, a(n) for n = 1..1000</a>
%e A231967 5719229 = 89*179*359, 179 = 2*89 + 1, 359 = 2*179 + 1.
%t A231967 sfQ[n_]:=Module[{q=2n+1,r},r=2q+1;AllTrue[{q,r},PrimeQ]&& SquareFreeQ[ n*q*r]]; 3#+10#^2+8#^3&/@Select[Prime[Range[400]],sfQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, May 26 2016 *)
%Y A231967 Cf. A005117, A000040, A231968, A231969, A231966. Cf. A007700 (first member of a prime triple in a 2p+1 progression).
%K A231967 nonn
%O A231967 1,1
%A A231967 _Jaroslav Krizek_, Nov 16 2013