A231971 Number of (n+1) X (2+1) 0..1 arrays with no element having a strict majority of its horizontal and vertical neighbors equal to one.
16, 56, 169, 550, 1764, 5680, 18225, 58596, 188356, 605458, 1946025, 6255180, 20106256, 64627982, 207734569, 667725402, 2146283584, 6898841796, 22175081569, 71277802674, 229109651716, 736431677100, 2367126871209, 7608702637640
Offset: 1
Keywords
Examples
Some solutions for n=2: ..0..0..1....1..0..0....0..0..0....0..0..1....0..0..0....0..0..0....0..0..1 ..1..0..0....0..0..1....1..0..1....0..0..0....0..0..0....0..1..0....1..0..0 ..0..0..0....0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A231977.
Formula
Empirical: a(n) = 3*a(n-1) + 2*a(n-3) + 4*a(n-4) - 10*a(n-5) - 2*a(n-6) - a(n-8) + a(n-9).
Empirical g.f.: x*(16 + 8*x + x^2 + 11*x^3 - 62*x^4 - 14*x^5 + x^6 - 5*x^7 + 6*x^8) / ((1 - 3*x - x^2 + x^3)*(1 + x^2 - 3*x^4 - x^6)). - Colin Barker, Oct 01 2018