A231977 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no element having a strict majority of its horizontal and vertical neighbors equal to one.
9, 16, 16, 36, 56, 36, 81, 169, 169, 81, 169, 550, 841, 550, 169, 361, 1764, 4489, 4489, 1764, 361, 784, 5680, 24964, 43983, 24964, 5680, 784, 1681, 18225, 136900, 417316, 417316, 136900, 18225, 1681, 3600, 58596, 741321, 3844551, 6507601, 3844551
Offset: 1
Examples
Some solutions for n=2 k=4 ..0..1..1..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..1..0 ..0..0..0..0..0....1..0..0..0..0....0..1..0..0..0....0..0..0..0..0 ..1..0..0..1..0....0..0..0..1..0....0..1..0..0..0....1..0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..475
Crossrefs
Column 1 is A207170 for n>1
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4) -a(n-5) -a(n-6)
k=2: a(n) = 3*a(n-1) +2*a(n-3) +4*a(n-4) -10*a(n-5) -2*a(n-6) -a(n-8) +a(n-9)
k=3: [order 21]
k=4: [order 49]
Comments