This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231979 #8 Nov 19 2013 12:32:24 %S A231979 1,2,4,5,7,8,10,13,17,19,22,29,32,34,37,43,44,50,52,55,65,67,70,77,83, %T A231979 89,112,113,115,118,124,127,133,145,152,155,167,172,182,188,199,200, %U A231979 215,229,274,277,295,302,308,322,362,379,400,418,433,488,494,499 %N A231979 Numbers n such that for every digit d in n, 2*n + 6*d - 3 is prime. %C A231979 The coefficients 2,6,-3 yield more hits between 1 and 1000000 than 2,2,1 or 1,1,1. %H A231979 T. D. Noe, <a href="/A231979/b231979.txt">Table of n, a(n) for n = 1..2000</a> %e A231979 124 is in the sequence since %e A231979 2*124+6*1-3=251 which is prime, %e A231979 2*124+6*2-3=257 which is prime, %e A231979 2*124+6*4-3=269 which is prime. %e A231979 241 is NOT in the sequence since %e A231979 2*241+6*2-3=491 which is prime, %e A231979 2*241+6*4-3=503 which is prime, %e A231979 but 2*241+6*1-3=485 which is not prime. %t A231979 fQ[n_] := Module[{d = IntegerDigits[n]}, And @@ PrimeQ[2*n + 6*d - 3]]; Select[Range[1000], fQ] (* _T. D. Noe_, Nov 19 2013 *) %o A231979 (Java) %o A231979 public class Ndp { %o A231979 // 2n+6d-3 is prime for all digits d in n %o A231979 private static final int MAX = 1000000; %o A231979 public static void main(String[] args) { %o A231979 String sequence = ""; %o A231979 loop: for (int n = 1; sequence.length() < 250 && n < MAX; n++) { %o A231979 for (int i = n; i > 0; i /= 10) { %o A231979 int d = i % 10; %o A231979 if (!isPrime(2 * n + 6 * d - 3)) { %o A231979 continue loop; %o A231979 } %o A231979 } %o A231979 sequence += n + ","; %o A231979 } %o A231979 System.out.println(sequence); %o A231979 } %o A231979 private static boolean isPrime(long n) { %o A231979 for (long i = 2; i <= Math.sqrt(n); i++) { %o A231979 if (n < 2 || n % i == 0) { %o A231979 return false; %o A231979 } %o A231979 } %o A231979 return true; %o A231979 } %o A231979 } %K A231979 nonn,easy,base %O A231979 1,2 %A A231979 _John R Phelan_, Nov 16 2013