cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231985 Decimal expansion of the side length (in degrees) of the spherical square whose solid angle is exactly one deg^2.

This page as a plain text file.
%I A231985 #16 Jun 09 2021 13:22:06
%S A231985 1,0,0,0,0,1,2,6,9,2,3,4,4,1,6,3,3,7,9,1,6,0,6,0,3,6,3,3,3,5,8,6,6,1,
%T A231985 7,7,8,6,3,9,6,5,2,1,8,5,2,8,7,7,6,6,6,4,9,0,3,5,0,7,8,1,3,6,4,3,8,2,
%U A231985 8,4,3,2,4,1,8,9,7,4,7,5,1,7,2,2,4,0,2,4,1,2,1,1,9,0,2,4,6,7,9,8,8,5,9,2,0
%N A231985 Decimal expansion of the side length (in degrees) of the spherical square whose solid angle is exactly one deg^2.
%C A231985 This answers the inverse problem of A231984 (not to be confused with its inverse value): what is the side arc-length of a spherical square required to subtend exactly 1 deg^2. Since the solid angle of a spherical square with side s (in rads) is Omega = 4*arcsin(sin(s/2)^2) (in sr), we have s = 2*arcsin(sqrt(Omega/4)). Converting Omega = 1 deg^2 into steradians (A231982), applying the formula, and converting the result from radians to degrees (A072097), one obtains the result.
%D A231985 G. V. Brummelen, Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry, Princeton University Press, 2012, ISBN 978-0691148922.
%H A231985 Stanislav Sykora, <a href="/A231985/b231985.txt">Table of n, a(n) for n = 1..2000</a>
%H A231985 Wikipedia, <a href="http://en.wikipedia.org/wiki/Solid_angle#Pyramid">Solid angle</a>, Section 3.3 (Pyramid)
%H A231985 Wikipedia, <a href="http://en.wikipedia.org/wiki/Square_degree">Square degree</a>
%H A231985 Wikipedia, <a href="http://en.wikipedia.org/wiki/Steradian">Steradian</a>
%F A231985 (360/Pi)*arcsin(sqrt(sin((Pi/360)^2))).
%e A231985 1.0000126923441633791606036333586617786396521852877666490350781364...
%t A231985 RealDigits[(360/Pi)*ArcSin[Sqrt[Sin[(Pi/360)^2]]],10,120][[1]] (* _Harvey P. Dale_, Jun 09 2021 *)
%o A231985 (PARI)
%o A231985 default(realprecision, 120);
%o A231985 (360/Pi)*asin(sqrt(sin((Pi/360)^2))) \\ or
%o A231985 (180/Pi)*solve(x = 0, 1, 4*asin(sin(x/2)^2) - (Pi/180)^2) \\ _Rick L. Shepherd_, Jan 29 2014
%Y A231985 Cf. A000796 (Pi), A072097 (rad/deg), A019685 (deg/rad), A231981 (sr/deg^2), A231982 (deg^2/sr), A231983, A231984 (inverse problem), A231986, A231985, A231987 (same problem for 1sr).
%K A231985 nonn,cons,easy
%O A231985 1,7
%A A231985 _Stanislav Sykora_, Nov 17 2013