cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231986 Decimal expansion of the solid angle (in steradians) subtended by a spherical square of one radian side.

Original entry on oeis.org

9, 2, 7, 6, 8, 9, 4, 7, 5, 3, 2, 2, 3, 1, 3, 6, 4, 0, 7, 9, 5, 6, 1, 3, 2, 3, 8, 1, 4, 5, 9, 5, 4, 9, 1, 7, 6, 3, 0, 4, 0, 4, 0, 0, 6, 4, 2, 4, 5, 7, 4, 3, 4, 0, 8, 9, 9, 9, 8, 6, 9, 0, 4, 6, 6, 9, 1, 7, 4, 8, 6, 1, 8, 8, 5, 9, 1, 4, 5, 1, 8, 8, 9, 3, 9, 3, 7, 1, 3, 1, 0, 9, 9, 0, 3, 1, 9, 1, 2, 3, 5, 3, 9, 4, 4
Offset: 0

Views

Author

Stanislav Sykora, Nov 17 2013

Keywords

Comments

In spherical geometry, the solid angle (in steradians) covered by a rectangle with arc-length sides r and s (in radians) equals Omega = 4*arcsin(sin(s/2)*sin(r/2)). For this constant, r = s = 1.
Note: It is a common mistake to think that 1 radian squared gives one steradian! See also the discussion in A231984.

Examples

			0.9276894753223136407956132381459549176304040064245743408999869...
		

References

  • G. V. Brummelen, Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry, Princeton University Press, 2012, ISBN 978-0691148922.

Crossrefs

Cf. A072097 (rad/deg), A019685 (deg/rad), A231981 (sr/deg^2), A231982 (deg^2/sr), A231984, A231987 (inverse problem).

Programs

Formula

Equals 4*arcsin(sin(1/2)^2).