cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231987 Decimal expansion of the side length (in radians) of the spherical square whose solid angle is exactly one steradian.

This page as a plain text file.
%I A231987 #14 Jun 06 2023 04:20:39
%S A231987 1,0,4,1,1,9,1,8,0,3,6,0,6,8,7,3,3,4,0,2,3,4,6,0,7,5,3,3,5,9,2,5,6,8,
%T A231987 7,8,8,9,0,0,6,9,6,6,7,6,0,0,6,0,8,7,1,3,4,9,1,5,2,3,0,2,8,1,3,1,2,9,
%U A231987 9,7,1,9,7,0,4,8,2,2,3,8,5,8,9,2,8,9,5,5,5,8,8,7,1,8,8,6,4,4,3,0,7,2,7,5,9
%N A231987 Decimal expansion of the side length (in radians) of the spherical square whose solid angle is exactly one steradian.
%C A231987 This is an inverse problem (but not an inverse value) to the one leading to A231986: what is the side s of a spherical square (in radians, rad) if it covers a given solid angle (in steradians, sr)? The solution (inverse of the formula in A231896) is s = 2*arcsin(sqrt(sin(Omega/4))). In this particular case, Omega = 1.
%H A231987 Stanislav Sykora, <a href="/A231987/b231987.txt">Table of n, a(n) for n = 1..2000</a>
%H A231987 Wikipedia, <a href="http://en.wikipedia.org/wiki/Solid_angle#Pyramid">Solid angle</a>, Section 3.3 (Pyramid).
%H A231987 Wikipedia, <a href="http://en.wikipedia.org/wiki/Steradian">Steradian</a>.
%F A231987 Equals 2*arcsin(sqrt(sin(1/4))).
%e A231987 1.041191803606873340234607533592568788900696676006087134915230281312997...
%t A231987 RealDigits[2*ArcSin[Sqrt[Sin[1/4]]], 10, 120][[1]] (* _Amiram Eldar_, Jun 06 2023 *)
%o A231987 (PARI)
%o A231987 default(realprecision, 120);
%o A231987 2*asin(sqrt(sin(1/4))) \\ or
%o A231987 solve(x = 1, 2, 4*asin((sin(x/2))^2) - 1) \\ least positive solution - _Rick L. Shepherd_, Jan 28 2014
%Y A231987 Cf. A072097 (rad/deg), A019685 (deg/rad), A231981 (sr/deg^2), A231982 (deg^2/sr), A231986 (inverse problem), A231896.
%K A231987 nonn,cons,easy
%O A231987 1,3
%A A231987 _Stanislav Sykora_, Nov 17 2013
%E A231987 Formula and comment corrected by _Rick L. Shepherd_, Jan 28 2014