cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232011 Numbers n such that (3n)^2 + 2 is prime.

This page as a plain text file.
%I A232011 #7 Nov 27 2013 11:31:19
%S A232011 1,3,5,7,11,13,15,19,27,33,35,37,39,41,49,57,73,75,79,81,83,85,91,99,
%T A232011 101,103,107,115,117,121,123,125,129,139,141,143,147,149,151,159,167,
%U A232011 171,183,185,187,191,201,203,217,225,227,233,237,251,259,269,273,279
%N A232011 Numbers n such that (3n)^2 + 2 is prime.
%C A232011 Corresponding values of such primes are in A056899(n) for n>2.
%C A232011 Supersequence of A126960 (primes p such that (3p)^2 + 2 is prime).
%H A232011 Jaroslav Krizek, <a href="/A232011/b232011.txt">Table of n, a(n) for n = 1..1000</a>
%F A232011 a(n) = sqrt(A056899(n+2) - 2)/3 = A067201(n+2)/3.
%e A232011 7 is in sequence because (3*7)^2 + 2 = 443 (prime).
%t A232011 Select[Range[279], PrimeQ[9 #^2 + 2] &] (* _T. D. Noe_, Nov 27 2013 *)
%o A232011 (PARI) is(n)=isprime(9*n^2+2) \\ _Charles R Greathouse IV_, Nov 25 2013
%Y A232011 Cf. A000040, A056899, A067201, A126960.
%K A232011 nonn
%O A232011 1,2
%A A232011 _Jaroslav Krizek_, Nov 25 2013