cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232019 Number of nX4 0..2 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

22, 212, 6443, 196196, 6129361, 189686855, 5882557816, 182394008292, 5654881014985, 175330190566652, 5436049185326305, 168543263858408581, 5225638055456575458, 162019464264673601823, 5023369120146020620770
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Column 4 of A232023

Examples

			Some solutions for n=4
..1..1..0..0....1..1..0..0....0..0..0..0....0..0..2..2....0..0..0..0
..0..0..0..1....0..0..1..1....0..0..2..2....0..1..0..0....1..1..1..2
..1..0..0..0....2..2..2..1....1..0..0..2....2..0..1..0....0..0..0..1
..0..0..0..1....1..1..1..2....0..0..0..0....0..2..0..0....2..0..0..0
		

Formula

Empirical: a(n) = 22*a(n-1) +291*a(n-2) +205*a(n-3) -17170*a(n-4) -23642*a(n-5) +202540*a(n-6) +388609*a(n-7) -834295*a(n-8) -1784905*a(n-9) +1651195*a(n-10) +3413016*a(n-11) -1620542*a(n-12) -2409175*a(n-13) +65386*a(n-14) +316887*a(n-15) -2491*a(n-16) -751*a(n-17) -64*a(n-18) for n>19