cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A232016 Number of n X n 0..2 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

3, 22, 852, 196196, 266779524, 1843879894941, 65537195133679516, 12236511620555899150414, 12152563947065097047918908554, 63842838047289027375275493667996131
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Diagonal of A232023

Examples

			Some solutions for n=4
..0..0..0..0....1..0..0..1....2..0..0..1....1..0..0..0....0..0..0..0
..1..1..0..1....0..0..2..0....0..0..0..0....0..1..2..2....1..0..0..2
..0..0..0..0....2..2..0..0....0..2..0..0....1..1..1..1....0..0..2..1
..0..0..0..0....2..2..1..1....2..0..0..2....1..1..2..2....0..2..1..1
		

A232017 Number of n X 2 0..2 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

3, 22, 121, 704, 4059, 23422, 135166, 779977, 4500958, 25973244, 149881402, 864906711, 4991036946, 28801314179, 166201073269, 959081123649, 5534480515641, 31937313562863, 184297694197368, 1063509616098391
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Examples

			Some solutions for n=7:
..1..1....2..0....1..1....1..1....0..0....0..0....2..0....2..0....1..1....1..0
..1..0....0..0....0..0....0..0....1..0....0..0....0..1....0..0....1..2....0..1
..0..1....0..1....2..1....1..2....0..0....1..1....2..2....1..2....0..0....1..1
..0..0....2..0....0..0....1..1....1..2....2..2....0..0....1..1....1..1....2..0
..0..1....0..0....0..0....0..0....2..2....2..2....1..1....2..1....2..1....0..1
..2..0....1..1....0..2....0..0....2..1....1..0....1..0....0..0....1..1....0..0
..0..1....1..1....2..2....2..2....1..1....0..2....0..2....1..1....1..1....2..2
		

Crossrefs

Column 2 of A232023.

Formula

Empirical: a(n) = 3*a(n-1) + 13*a(n-2) + 16*a(n-3) + 7*a(n-4) + a(n-5).
Empirical g.f.: x*(1 + x)*(3 + x)*(1 + 3*x + x^2) / (1 - 3*x - 13*x^2 - 16*x^3 - 7*x^4 - x^5). - Colin Barker, Oct 01 2018

A232018 Number of n X 3 0..2 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

9, 66, 852, 11517, 156913, 2125749, 28852936, 391447970, 5311170384, 72061691152, 977727048997, 13265735926493, 179988561188366, 2442072186590951, 33133863936280024, 449557939142907661, 6099570552966630306
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Examples

			Some solutions for n=5:
..1..1..1....0..0..0....2..0..0....2..0..0....1..1..1....1..1..0....0..0..2
..0..0..0....1..0..0....0..0..0....0..2..2....0..0..0....1..0..2....0..0..1
..0..0..0....0..0..0....1..2..1....0..0..1....0..2..1....0..0..2....0..2..2
..2..0..1....0..2..0....1..1..0....0..0..0....0..0..0....0..0..0....2..1..1
..0..0..0....0..0..0....0..0..2....2..0..0....1..0..0....1..0..0....1..1..2
		

Crossrefs

Column 3 of A232023.

Formula

Empirical: a(n) = 9*a(n-1) + 59*a(n-2) + 62*a(n-3) - 275*a(n-4) - 257*a(n-5) + 146*a(n-6) + 84*a(n-7) for n>8.
Empirical g.f.: x*(9 - 15*x - 273*x^2 - 603*x^3 + 1375*x^4 + 1668*x^5 - 778*x^6 - 504*x^7) / (1 - 9*x - 59*x^2 - 62*x^3 + 275*x^4 + 257*x^5 - 146*x^6 - 84*x^7). - Colin Barker, Oct 01 2018

A232019 Number of nX4 0..2 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

22, 212, 6443, 196196, 6129361, 189686855, 5882557816, 182394008292, 5654881014985, 175330190566652, 5436049185326305, 168543263858408581, 5225638055456575458, 162019464264673601823, 5023369120146020620770
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Column 4 of A232023

Examples

			Some solutions for n=4
..1..1..0..0....1..1..0..0....0..0..0..0....0..0..2..2....0..0..0..0
..0..0..0..1....0..0..1..1....0..0..2..2....0..1..0..0....1..1..1..2
..1..0..0..0....2..2..2..1....1..0..0..2....2..0..1..0....0..0..0..1
..0..0..0..1....1..1..1..2....0..0..0..0....0..2..0..0....2..0..0..0
		

Formula

Empirical: a(n) = 22*a(n-1) +291*a(n-2) +205*a(n-3) -17170*a(n-4) -23642*a(n-5) +202540*a(n-6) +388609*a(n-7) -834295*a(n-8) -1784905*a(n-9) +1651195*a(n-10) +3413016*a(n-11) -1620542*a(n-12) -2409175*a(n-13) +65386*a(n-14) +316887*a(n-15) -2491*a(n-16) -751*a(n-17) -64*a(n-18) for n>19

A232020 Number of nX5 0..2 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

51, 716, 52680, 3668759, 266779524, 19227454407, 1386576216443, 100026008988909, 7214505515214571, 520380715850845302, 37534653006701646356, 2707344505456485382130, 195278730937825588935157
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Column 5 of A232023

Examples

			Some solutions for n=3
..0..0..0..0..0....0..0..0..0..0....2..2..0..0..0....0..0..1..2..2
..1..0..0..1..2....2..2..1..0..0....2..0..0..0..1....0..1..2..2..0
..2..2..1..1..1....2..2..1..1..2....1..2..2..2..2....0..0..0..0..2
		

Formula

Empirical: a(n) = 51*a(n-1) +1709*a(n-2) -3322*a(n-3) -709171*a(n-4) -2253929*a(n-5) +87204864*a(n-6) +438193140*a(n-7) -5083075630*a(n-8) -21508462382*a(n-9) +126850541368*a(n-10) +406583965722*a(n-11) -1654793760869*a(n-12) -3605448973767*a(n-13) +12973680473891*a(n-14) +18876214872304*a(n-15) -70565885486364*a(n-16) -93710907270316*a(n-17) +270652747878947*a(n-18) +384062407194770*a(n-19) -420281252224531*a(n-20) -716290299119857*a(n-21) -266277634901151*a(n-22) +2127547571495*a(n-23) +377201492733031*a(n-24) +276656861200522*a(n-25) -68333741627600*a(n-26) -14328379159582*a(n-27) -49672744631068*a(n-28) -68111539250695*a(n-29) +25054413840127*a(n-30) +16739714021218*a(n-31) -3993304936259*a(n-32) +2872789395548*a(n-33) -93742451004*a(n-34) -1672268758969*a(n-35) +131609119929*a(n-36) +279643304785*a(n-37) -19537641382*a(n-38) -23945224836*a(n-39) +1053476640*a(n-40) +898919424*a(n-41) for n>42

A232021 Number of nX6 0..2 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

121, 2447, 429976, 66962048, 11145921002, 1843879894941, 304550219824247, 50342644960736903, 8320423932674561675, 1375162243575550144598, 227283727667243341913617, 37564730328193369286093947
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Column 6 of A232023

Examples

			Some solutions for n=2
..0..0..0..0..0..1....1..0..0..0..0..0....0..0..0..0..0..0....2..2..2..2..2..2
..0..0..2..0..0..0....0..0..1..0..0..0....1..0..0..2..1..1....2..2..2..2..2..2
		

Formula

Empirical recurrence of order 79 (see link above)

A232022 Number of nX7 0..2 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

292, 8312, 3466702, 1199720929, 456239739137, 173266374179998, 65537195133679516, 24813602727109192732, 9394837039044135797287, 3556791944789941282262008, 1346600979320131586886274466
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Column 7 of A232023

Examples

			Some solutions for n=2
..0..0..0..0..0..0..0....2..0..0..0..2..0..0....1..0..0..0..0..0..2
..0..2..0..0..1..1..2....0..1..0..0..0..0..2....0..2..0..0..0..1..1
		

A232024 Number of 2 X n 0..2 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

9, 22, 66, 212, 716, 2447, 8312, 28118, 95066, 321480, 1087248, 3677451, 12439185, 42076051, 142321098, 481394558, 1628298753, 5507667897, 18629517012, 63013782841, 213142264885, 720947466146, 2438583756862, 8248438798128
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Row 2 of A232023.

Examples

			Some solutions for n=7
..0..0..0..0..0..0..0....1..1..0..0..1..1..2....2..1..1..1..0..0..0
..1..1..2..2..1..0..0....1..0..0..1..1..1..1....1..1..1..0..0..1..2
		

Crossrefs

Cf. A232023.

Formula

Empirical: a(n) = 9*a(n-1) -36*a(n-2) +97*a(n-3) -202*a(n-4) +329*a(n-5) -437*a(n-6) +459*a(n-7) -407*a(n-8) +291*a(n-9) -161*a(n-10) +74*a(n-11) -4*a(n-12) +4*a(n-13) +15*a(n-14) +2*a(n-15) +3*a(n-16) +a(n-17) for n>18.

A232025 Number of 3Xn 0..2 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

27, 121, 852, 6443, 52680, 429976, 3466702, 27787183, 222389326, 1780673721, 14267000759, 114336941196, 916296529103, 7342802491841, 58840508065211, 471508681192630, 3778370050644605, 30277527214482376, 242625604992194944
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Row 3 of A232023

Examples

			Some solutions for n=5
..1..1..1..2..0....1..1..2..2..1....2..2..2..1..0....2..0..0..1..1
..1..1..2..0..0....0..0..0..0..0....0..0..0..0..1....0..0..0..0..0
..2..2..2..1..1....0..2..2..0..0....0..0..2..1..1....1..2..0..0..2
		

Formula

Empirical: a(n) = 27*a(n-1) -345*a(n-2) +2906*a(n-3) -18194*a(n-4) +89630*a(n-5) -358894*a(n-6) +1185747*a(n-7) -3260528*a(n-8) +7466097*a(n-9) -14160132*a(n-10) +21896170*a(n-11) -26633596*a(n-12) +23529983*a(n-13) -11654811*a(n-14) -723584*a(n-15) -1889472*a(n-16) +30150715*a(n-17) -76789441*a(n-18) +108264425*a(n-19) -86458925*a(n-20) -2171553*a(n-21) +134672418*a(n-22) -234146243*a(n-23) +241899114*a(n-24) -161267275*a(n-25) +17371932*a(n-26) +86178714*a(n-27) -121036721*a(n-28) +159172848*a(n-29) -142380806*a(n-30) +98877622*a(n-31) -56252050*a(n-32) -58219355*a(n-33) +89668896*a(n-34) -59655755*a(n-35) +88313022*a(n-36) -12314620*a(n-37) -52223803*a(n-38) -6093896*a(n-39) -8246178*a(n-40) +26031408*a(n-41) +11882831*a(n-42) +3875046*a(n-43) -10990860*a(n-44) -10242618*a(n-45) +3330927*a(n-46) +2031952*a(n-47) +1747833*a(n-48) +1001573*a(n-49) -1169345*a(n-50) -559815*a(n-51) +163580*a(n-52) +94865*a(n-53) +16502*a(n-54) -321*a(n-55) -4403*a(n-56) -1435*a(n-57) -16*a(n-58) +76*a(n-59) +28*a(n-60) +4*a(n-61) for n>64

A232026 Number of 4Xn 0..2 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

81, 704, 11517, 196196, 3668759, 66962048, 1199720929, 21351363302, 380166026971, 6777797788833, 120894842412728, 2156413213871354, 38461828093868228, 685987901327913013, 12234941433232653332
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Row 4 of A232023

Examples

			Some solutions for n=4
..0..0..0..0....0..0..0..1....0..0..2..1....0..0..1..1....0..0..2..2
..1..1..0..2....0..0..1..2....0..0..0..0....0..2..1..1....0..2..0..0
..1..0..1..0....1..0..0..0....2..0..1..1....2..2..1..2....2..0..0..0
..0..2..0..0....0..0..0..2....0..2..1..1....0..0..0..0....2..1..1..2
		
Showing 1-10 of 13 results. Next