cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A232041 Number of n X n 0..1 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

2, 7, 80, 3082, 377676, 136134243, 149582129861, 504400950236556, 5221663722138853372, 165185087217466182289933, 15978120855310868658798043995, 4729579027493623228201244058306356
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Diagonal of A232047

Examples

			Some solutions for n=4
..1..1..1..1....1..1..1..0....0..0..0..0....0..0..0..1....0..0..0..1
..0..0..0..1....0..0..0..1....1..0..0..1....0..0..0..1....1..0..0..0
..0..0..0..0....1..0..0..0....0..0..0..0....1..0..0..0....0..0..0..0
..1..0..0..0....0..0..1..1....0..0..0..0....0..0..0..0....1..1..1..1
		

A232042 Number of n X 3 0..1 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

4, 15, 80, 446, 2477, 13752, 76375, 424115, 2355221, 13079032, 72630752, 403334385, 2239803950, 12438120321, 69071597937, 383569664377, 2130046094920, 11828611039210, 65686859759121, 364773474308192, 2025666747456127
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Examples

			Some solutions for n=7:
..1..1..0....1..1..0....0..0..1....1..1..0....1..0..0....1..1..1....1..1..0
..0..0..0....1..0..0....0..1..0....0..0..0....0..0..0....1..0..0....0..0..0
..1..1..0....1..1..1....1..0..0....0..1..0....0..0..0....0..1..0....0..0..0
..1..0..1....0..0..0....1..0..0....0..0..0....1..0..1....0..0..0....0..0..0
..0..1..0....0..0..0....0..1..0....1..1..1....0..1..1....1..0..0....1..1..1
..0..0..0....1..0..1....0..0..0....0..0..0....0..0..0....1..1..1....0..0..1
..0..0..0....0..1..1....0..0..1....1..0..0....0..0..0....0..0..0....0..1..1
		

Crossrefs

Column 3 of A232047.

Formula

Empirical: a(n) = 4*a(n-1) + 9*a(n-2) -a (n-3) - 6*a(n-4) for n>5.
Empirical g.f.: x*(4 - x - 16*x^2 - 5*x^3 + 12*x^4) / (1 - 4*x - 9*x^2 + x^3 + 6*x^4). - Colin Barker, Oct 02 2018

A232043 Number of n X 4 0..1 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

7, 34, 318, 3082, 29974, 290672, 2821630, 27382537, 265752221, 2579134666, 25030650682, 242923857095, 2357589444796, 22880536455569, 222056873956095, 2155074272108794, 20915115264627031, 202982352989424279
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Examples

			Some solutions for n=6:
..0..0..0..0....0..0..1..0....0..0..0..0....0..0..0..1....0..0..0..1
..0..1..0..1....0..0..0..0....0..1..1..0....0..0..0..1....0..0..0..1
..0..0..1..0....0..1..0..1....0..0..0..1....1..0..0..1....0..0..0..0
..0..0..0..0....1..0..0..0....0..1..1..0....0..0..0..0....0..0..0..0
..1..0..1..1....0..0..0..0....0..0..0..0....0..0..1..0....1..1..0..0
..0..0..0..0....1..1..0..0....1..1..1..1....1..1..0..0....1..0..0..1
		

Crossrefs

Column 4 of A232047.

Formula

Empirical: a(n) = 7*a(n-1) + 29*a(n-2) - 15*a(n-3) - 116*a(n-4) + 17*a(n-5) + 99*a(n-6) + 12*a(n-7) - 16*a(n-8) for n>9.
Empirical g.f.: x*(7 - 15*x - 123*x^2 - 25*x^3 + 500*x^4 + 71*x^5 - 473*x^6 - 95*x^7 + 84*x^8) / (1 - 7*x - 29*x^2 + 15*x^3 + 116*x^4 - 17*x^5 - 99*x^6 - 12*x^7 + 16*x^8). - Colin Barker, Oct 02 2018

A232044 Number of nX5 0..1 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

12, 79, 1315, 22063, 377676, 6430408, 109609484, 1868028342, 31836538191, 542586883485, 9247235554661, 157599508115116, 2685948646284826, 45776288238345925, 780159569752010830, 13296162250888648968
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Column 5 of A232047

Examples

			Some solutions for n=4
..1..0..0..1..0....0..0..0..0..1....1..1..1..0..0....1..0..0..0..0
..0..0..1..0..0....1..0..0..0..1....1..0..0..0..1....0..0..0..0..0
..1..0..0..0..1....1..1..0..0..0....0..0..0..0..0....1..1..0..0..0
..0..0..1..1..1....1..1..1..0..0....0..0..1..1..1....0..0..0..0..0
		

Formula

Empirical: a(n) = 12*a(n-1) +99*a(n-2) -133*a(n-3) -1593*a(n-4) +638*a(n-5) +9006*a(n-6) -2223*a(n-7) -18168*a(n-8) +4203*a(n-9) +6433*a(n-10) -453*a(n-11) -1184*a(n-12) +28*a(n-13) +96*a(n-14) for n>15

A232045 Number of nX6 0..1 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

21, 184, 5364, 153562, 4588174, 136134243, 4041385884, 119990644449, 3562337669985, 105762437152368, 3139973158165990, 93222494384394215, 2767677519549496896, 82169423941902553632, 2439523490954376368513
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Column 6 of A232047

Examples

			Some solutions for n=3
..0..0..0..1..0..0....1..1..1..1..1..1....1..0..0..0..1..0....0..0..0..0..1..1
..0..0..0..0..0..1....0..0..0..1..0..0....0..0..0..0..0..0....1..0..0..1..0..0
..0..1..0..0..0..0....0..0..1..0..0..1....0..1..0..0..0..0....0..0..0..0..1..1
		

Formula

Empirical: a(n) = 21*a(n-1) +314*a(n-2) -1045*a(n-3) -19776*a(n-4) +25231*a(n-5) +515946*a(n-6) -435697*a(n-7) -6637658*a(n-8) +7103608*a(n-9) +30185726*a(n-10) -21604276*a(n-11) -75687442*a(n-12) +24802802*a(n-13) +110712267*a(n-14) -9086579*a(n-15) -102117142*a(n-16) -7051224*a(n-17) +60433119*a(n-18) +10059839*a(n-19) -21510561*a(n-20) -4142240*a(n-21) +4134848*a(n-22) +562752*a(n-23) -331776*a(n-24) for n>26

A232046 Number of nX7 0..1 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

37, 426, 21680, 1060850, 55505057, 2882322121, 149582129861, 7766282047395, 403179428472169, 20931014633412316, 1086631809725472699, 56412330010727022796, 2928639202177098316335, 152039923888661955022045
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Column 7 of A232047

Examples

			Some solutions for n=3
..1..1..0..0..1..1..0....1..1..1..0..0..1..0....1..1..0..0..0..1..0
..0..0..0..0..0..0..1....1..1..0..0..0..0..1....1..0..0..0..0..0..0
..0..0..0..1..1..1..1....1..0..0..1..0..0..0....0..1..1..1..0..0..1
		

Formula

Empirical: a(n) = 37*a(n-1) +1006*a(n-2) -7908*a(n-3) -238744*a(n-4) +827527*a(n-5) +25644226*a(n-6) -60426052*a(n-7) -1492286296*a(n-8) +3633925342*a(n-9) +43875666568*a(n-10) -107977809709*a(n-11) -703020167435*a(n-12) +1582946864094*a(n-13) +6861058051370*a(n-14) -13007490174177*a(n-15) -46519199569498*a(n-16) +69047601485641*a(n-17) +229859178338360*a(n-18) -242130553402589*a(n-19) -832929979409983*a(n-20) +545952115529243*a(n-21) +2151614123430291*a(n-22) -774525810027452*a(n-23) -3911959857587902*a(n-24) +671585850443119*a(n-25) +4994005418173713*a(n-26) -331105726209586*a(n-27) -4446327813002721*a(n-28) +67432823122826*a(n-29) +2717194954748778*a(n-30) +19167495231573*a(n-31) -1114986545930127*a(n-32) -19793693900133*a(n-33) +300747559736654*a(n-34) +7123485575828*a(n-35) -52288217100393*a(n-36) -1364793526983*a(n-37) +5761797739537*a(n-38) +137423835774*a(n-39) -389750002988*a(n-40) -4269685856*a(n-41) +15838342144*a(n-42) -48642048*a(n-43) -297844736*a(n-44) for n>47

A232048 Number of 2 X n 0..1 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

4, 7, 15, 34, 79, 184, 426, 984, 2274, 5258, 12159, 28117, 65018, 150347, 347661, 803931, 1859013, 4298789, 9940535, 22986529, 53154136, 122913828, 284226412, 657246261, 1519818815, 3514434954, 8126793100, 18792428087, 43455684079
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Examples

			Some solutions for n=7:
..1..1..1..1..0..0..0....1..1..1..0..0..0..1....0..0..0..0..0..1..0
..0..0..0..0..0..1..1....0..0..0..0..0..0..0....0..0..0..0..0..0..0
		

Crossrefs

Row 2 of A232047.

Formula

Empirical: a(n) = 4*a(n-1) - 6*a(n-2) + 7*a(n-3) - 6*a(n-4) + 3*a(n-5) - a(n-6) - a(n-7) for n>8.
Empirical g.f.: x*(4 - 9*x + 11*x^2 - 12*x^3 + 8*x^4 - 3*x^5 - x^6 + x^7) / ((1 - x + x^2)*(1 - 3*x + 2*x^2 - 2*x^3 + 2*x^4 + x^5)). - Colin Barker, Oct 02 2018

A232049 Number of 3Xn 0..1 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

8, 21, 80, 318, 1315, 5364, 21680, 87452, 352931, 1425261, 5757064, 23253889, 93921193, 379334811, 1532086339, 6187939435, 24992490166, 100942222266, 407695589939, 1646641727295, 6650621491464, 26861196902537, 108489696252447
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Row 3 of A232047

Examples

			Some solutions for n=7
..0..0..0..0..0..0..0....0..0..0..1..1..1..1....1..0..0..0..0..0..1
..1..0..0..1..0..0..1....1..0..0..0..1..0..0....0..0..0..0..0..1..0
..1..1..1..0..0..1..1....1..1..0..0..0..0..1....0..0..1..1..1..0..0
		

Formula

Empirical: a(n) = 8*a(n-1) -27*a(n-2) +64*a(n-3) -104*a(n-4) +124*a(n-5) -102*a(n-6) +34*a(n-7) +10*a(n-8) -34*a(n-9) +19*a(n-10) -2*a(n-11) +a(n-12) +10*a(n-13) -2*a(n-14) -2*a(n-15) for n>18

A232050 Number of 4Xn 0..1 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

16, 65, 446, 3082, 22063, 153562, 1060850, 7322233, 50611921, 350063149, 2421230532, 16745004894, 115803439202, 800864168388, 5538580113288, 38303510063492, 264897950563469, 1831970665295301, 12669468933770841
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Row 4 of A232047

Examples

			Some solutions for n=5
..0..0..0..0..1....1..1..1..1..1....0..0..1..0..0....0..0..0..0..0
..0..1..0..0..0....0..0..0..0..0....0..0..0..0..0....1..0..1..1..1
..1..0..0..0..1....1..1..1..0..0....0..1..0..1..0....0..1..0..0..0
..0..0..0..1..1....0..0..0..0..1....0..0..0..0..1....1..0..0..0..0
		

Formula

Empirical: a(n) = 16*a(n-1) -115*a(n-2) +565*a(n-3) -2034*a(n-4) +5817*a(n-5) -13565*a(n-6) +26712*a(n-7) -45206*a(n-8) +66931*a(n-9) -89161*a(n-10) +109246*a(n-11) -128417*a(n-12) +138117*a(n-13) -133354*a(n-14) +106727*a(n-15) -71595*a(n-16) +45288*a(n-17) -14520*a(n-18) -13147*a(n-19) +45149*a(n-20) -49440*a(n-21) +35999*a(n-22) -13855*a(n-23) +8496*a(n-24) +5713*a(n-25) +1489*a(n-26) -5200*a(n-27) -450*a(n-28) +1011*a(n-29) +205*a(n-30) -126*a(n-31) -24*a(n-32) +9*a(n-33) for n>36

A232051 Number of 5Xn 0..1 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

32, 200, 2477, 29974, 377676, 4588174, 55505057, 672197205, 8161125436, 99125873602, 1203715367515, 14614720867531, 177437571856013, 2154309474837218, 26156233251344824, 317572434120810940
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Row 5 of A232047

Examples

			Some solutions for n=4
..1..0..0..1....1..1..0..0....1..1..1..1....1..1..1..1....0..0..0..0
..0..0..0..0....0..0..0..1....0..0..0..0....1..1..1..1....0..0..0..1
..0..0..0..1....1..0..1..1....0..0..0..1....1..0..0..0....0..0..0..1
..0..1..0..0....0..1..1..0....1..0..1..0....0..0..1..0....0..0..0..0
..0..0..1..1....0..0..0..0....0..1..0..0....0..0..0..1....0..1..1..1
		

Formula

Empirical recurrence of order 78 (see link above)
Showing 1-10 of 12 results. Next