A232072 Number of (n+1)X(4+1) 0..1 arrays with every element equal to some horizontal, diagonal or antidiagonal neighbor, with top left element zero.
161, 3681, 91636, 2265691, 56126173, 1389867384, 34420057373, 852404560481, 21109624812630, 522775448585677, 12946425187404245, 320615523780601420, 7939976687329054275, 196631869363448682249, 4869547301285168517052
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..1..1..1..1....0..0..0..1..0....0..0..1..1..1....0..0..0..1..0 ..0..0..0..1..0....1..0..1..0..1....1..1..0..0..1....1..1..1..0..0 ..0..0..1..0..1....0..1..0..1..1....1..1..0..1..1....0..0..0..1..0 ..0..0..0..1..0....0..0..1..0..1....1..0..0..0..0....0..0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 18*a(n-1) +162*a(n-2) +236*a(n-3) -2046*a(n-4) -9966*a(n-5) -6228*a(n-6) +65257*a(n-7) +188276*a(n-8) -46843*a(n-9) -649584*a(n-10) -764788*a(n-11) +412637*a(n-12) +1321769*a(n-13) +761732*a(n-14) +182925*a(n-15) -381900*a(n-16) -337601*a(n-17) -102296*a(n-18) +5318*a(n-19) -23355*a(n-20) -10567*a(n-21) -20176*a(n-22) -133*a(n-23) -430*a(n-24) -2201*a(n-25) +428*a(n-26) +116*a(n-27) +62*a(n-28) +8*a(n-29) +4*a(n-30)
Comments