cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A232077 Number of (1+1) X (n+1) 0..1 arrays with every element equal to some horizontal, diagonal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

3, 15, 46, 161, 601, 2208, 8053, 29415, 107534, 393061, 1436589, 5250624, 19190841, 70141747, 256364934, 937002409, 3424702513, 12517136672, 45749581901, 167212702063, 611155044830, 2233744710845, 8164238313221, 29839930638080
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Row 1 of A232076.

Examples

			Some solutions for n=7:
..0..1..0..1..0..1..0..0....0..0..1..0..0..0..0..1....0..1..0..0..1..1..1..1
..1..0..1..0..1..1..0..0....0..1..0..1..1..1..1..0....1..0..0..0..1..0..0..1
		

Crossrefs

Cf. A232076.

Formula

Empirical: a(n) = 3*a(n-1) + a(n-2) + 4*a(n-3) + 4*a(n-4).
Empirical g.f.: x*(1 + 2*x)*(3 - 2*x^2) / (1 - 3*x - x^2 - 4*x^3 - 4*x^4). - Colin Barker, Mar 19 2018

A232070 Number of (n+1) X (2+1) 0..1 arrays with every element equal to some horizontal, diagonal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

15, 87, 602, 3985, 26713, 178484, 1193537, 7979619, 53352090, 356709629, 2384952501, 15945724308, 106612681357, 712809462455, 4765824578786, 31864172723641, 213042987115297, 1424399583243252, 9523496644232169
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Examples

			Some solutions for n=6:
..0..0..0....0..1..0....0..1..0....0..0..0....0..1..0....0..0..0....0..0..0
..1..1..0....1..0..0....0..0..1....1..1..0....0..0..1....0..1..0....1..0..0
..0..1..1....0..0..0....0..1..1....1..0..0....0..0..0....1..0..0....1..1..1
..1..0..1....0..0..0....1..0..1....1..1..1....1..1..0....0..1..0....0..0..0
..0..1..0....0..1..0....1..0..0....1..1..1....0..0..0....1..1..1....1..0..1
..0..1..0....1..0..1....1..1..1....0..0..0....1..0..0....0..0..1....1..1..0
..1..0..1....1..1..0....0..0..0....0..0..0....0..1..1....0..1..0....1..1..1
		

Crossrefs

Column 2 of A232076.

Formula

Empirical: a(n) = 5*a(n-1) + 11*a(n-2) + 2*a(n-3) - 8*a(n-5).
Empirical g.f.: x*(15 + 12*x + 2*x^2 - 12*x^3 - 8*x^4) / (1 - 5*x - 11*x^2 - 2*x^3 + 8*x^5). - Colin Barker, Oct 03 2018

A232071 Number of (n+1)X(3+1) 0..1 arrays with every element equal to some horizontal, diagonal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

46, 520, 6624, 82996, 1043172, 13105012, 164650280, 2068621706, 25989674166, 326528021922, 4102419848778, 51541819920986, 647559075731254, 8135777066019200, 102215953652767856, 1284216749830662044
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Column 3 of A232076

Examples

			Some solutions for n=4
..0..1..1..1....0..1..1..1....0..0..1..0....0..0..0..0....0..0..1..1
..1..0..1..1....1..0..0..0....1..1..0..1....0..1..0..0....0..1..1..1
..0..0..0..1....0..1..1..1....1..0..1..1....1..1..0..0....1..1..0..0
..0..1..1..0....0..1..0..0....1..1..1..0....1..1..0..0....0..1..1..1
..1..1..0..1....1..0..0..0....1..1..0..0....1..0..0..0....0..0..0..1
		

Formula

Empirical: a(n) = 10*a(n-1) +33*a(n-2) +6*a(n-3) -176*a(n-4) -300*a(n-5) -15*a(n-6) -76*a(n-7) +79*a(n-8) +72*a(n-9) -16*a(n-10)

A232072 Number of (n+1)X(4+1) 0..1 arrays with every element equal to some horizontal, diagonal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

161, 3681, 91636, 2265691, 56126173, 1389867384, 34420057373, 852404560481, 21109624812630, 522775448585677, 12946425187404245, 320615523780601420, 7939976687329054275, 196631869363448682249, 4869547301285168517052
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Column 4 of A232076

Examples

			Some solutions for n=3
..0..1..1..1..1....0..0..0..1..0....0..0..1..1..1....0..0..0..1..0
..0..0..0..1..0....1..0..1..0..1....1..1..0..0..1....1..1..1..0..0
..0..0..1..0..1....0..1..0..1..1....1..1..0..1..1....0..0..0..1..0
..0..0..0..1..0....0..0..1..0..1....1..0..0..0..0....0..0..0..1..1
		

Formula

Empirical: a(n) = 18*a(n-1) +162*a(n-2) +236*a(n-3) -2046*a(n-4) -9966*a(n-5) -6228*a(n-6) +65257*a(n-7) +188276*a(n-8) -46843*a(n-9) -649584*a(n-10) -764788*a(n-11) +412637*a(n-12) +1321769*a(n-13) +761732*a(n-14) +182925*a(n-15) -381900*a(n-16) -337601*a(n-17) -102296*a(n-18) +5318*a(n-19) -23355*a(n-20) -10567*a(n-21) -20176*a(n-22) -133*a(n-23) -430*a(n-24) -2201*a(n-25) +428*a(n-26) +116*a(n-27) +62*a(n-28) +8*a(n-29) +4*a(n-30)

A232073 Number of (n+1)X(5+1) 0..1 arrays with every element equal to some horizontal, diagonal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

601, 26587, 1313477, 64298979, 3154769585, 154723539035, 7588839921175, 372212311236497, 18256039956940439, 895410839428587845, 43917552649460225906, 2154040733553483724441, 105650046626276283099403
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Column 5 of A232076

Examples

			Some solutions for n=2
..0..1..1..0..0..1....0..0..1..0..0..1....0..0..1..0..0..0....0..1..1..1..0..0
..0..0..1..1..1..0....0..0..1..1..1..0....1..1..1..0..0..0....0..0..1..0..0..1
..1..1..0..0..1..1....1..1..0..1..0..1....0..0..1..0..0..0....1..1..0..0..1..0
		

Formula

Empirical: a(n) = 36*a(n-1) +621*a(n-2) +1905*a(n-3) -39207*a(n-4) -411402*a(n-5) -898125*a(n-6) +9425393*a(n-7) +84749816*a(n-8) +111051068*a(n-9) -879007533*a(n-10) -4910760430*a(n-11) -5538189143*a(n-12) +30036432177*a(n-13) +127210420672*a(n-14) +100515718479*a(n-15) -435334756085*a(n-16) -1303280584822*a(n-17) -335724807381*a(n-18) +2626288625618*a(n-19) +5071408736720*a(n-20) +1385035898258*a(n-21) -4910435900712*a(n-22) -8006645842945*a(n-23) -6555595728604*a(n-24) -8685616697980*a(n-25) +8851048636512*a(n-26) +16243480894674*a(n-27) +16294806863831*a(n-28) +866909283484*a(n-29) -15274511535622*a(n-30) -15229622369906*a(n-31) +1479765422989*a(n-32) +9106580336257*a(n-33) +6260481470057*a(n-34) -4173602288058*a(n-35) -2444349654584*a(n-36) -2452573728389*a(n-37) +2262922603605*a(n-38) -79247649905*a(n-39) +434538965793*a(n-40) -274104583405*a(n-41) -9793704008*a(n-42) +31592467035*a(n-43) -7963078993*a(n-44) +825205473*a(n-45) -9444076*a(n-46) -4479389*a(n-47) +581064*a(n-48) -22036*a(n-49) +72*a(n-50)

A232074 Number of (n+1)X(6+1) 0..1 arrays with every element equal to some horizontal, diagonal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

2208, 189404, 18480458, 1786680190, 173086988636, 16761785898550, 1623332441842096, 157213734438546256, 15225588252754045874, 1474543539136159332212, 142804250145920967976120
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Column 6 of A232076

Examples

			Some solutions for n=2
..0..0..0..1..0..1..1....0..0..1..1..1..0..0....0..1..1..0..0..0..1
..0..0..0..1..1..0..0....0..0..1..0..1..0..1....0..0..1..1..1..1..0
..0..0..1..0..1..1..0....0..1..0..1..0..1..1....1..1..1..1..0..0..1
		

A232075 Number of (n+1)X(7+1) 0..1 arrays with every element equal to some horizontal, diagonal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

8053, 1348429, 259478100, 49535329657, 9473198719765, 1811023880030050, 346245388962998639, 66197171494579191745, 12655970632877465163660, 2419643641032901454549777, 462601857032922578435356051
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Column 7 of A232076

Examples

			Some solutions for n=1
..0..0..0..1..0..0..1..1....0..0..0..1..0..0..0..1....0..0..1..1..0..0..1..1
..0..1..1..0..0..1..0..1....0..0..1..1..1..1..1..1....0..1..0..1..1..0..0..0
		

A232078 Number of (2+1) X (n+1) 0..1 arrays with every element equal to some horizontal, diagonal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

11, 87, 520, 3681, 26587, 189404, 1348429, 9607995, 68462448, 487805049, 3475683907, 24764857724, 176453944877, 1257264924795, 8958230513184, 63828946109201, 454792310901883, 3240474086774308, 23088939844648997
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Examples

			Some solutions for n=6:
..0..0..1..0..0..0..0....0..0..0..1..1..1..1....0..0..0..0..0..0..0
..0..1..1..0..1..1..1....0..0..1..1..1..0..1....0..1..1..1..0..1..0
..1..0..0..1..1..1..1....0..1..0..1..0..1..0....1..0..0..0..1..1..1
		

Crossrefs

Row 2 of A232076.

Formula

Empirical: a(n) = 5*a(n-1) + 11*a(n-2) + 23*a(n-3) + 45*a(n-4) + 10*a(n-5) + a(n-6) - 3*a(n-7) - 2*a(n-8).
Empirical g.f.: x*(11 + 32*x - 36*x^2 - 129*x^3 - 34*x^4 - 7*x^5 + 8*x^6 + 6*x^7) / (1 - 5*x - 11*x^2 - 23*x^3 - 45*x^4 - 10*x^5 - x^6 + 3*x^7 + 2*x^8). - Colin Barker, Oct 03 2018

A232079 Number of (3+1)X(n+1) 0..1 arrays with every element equal to some horizontal, diagonal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

34, 602, 6624, 91636, 1313477, 18480458, 259478100, 3648082844, 51295928745, 721205855171, 10139874360108, 142563684195350, 2004404663282803, 28181342842446164, 396221424711381995, 5570757356145256130
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Row 3 of A232076

Examples

			Some solutions for n=4
..0..1..0..1..0....0..1..1..0..1....0..1..0..0..1....0..0..0..0..1
..1..0..1..0..0....1..0..0..1..1....0..0..1..1..0....0..1..1..1..1
..1..1..1..0..0....1..0..1..1..0....1..0..0..0..0....0..0..1..1..0
..1..0..0..0..0....0..1..1..0..0....0..1..1..0..0....0..0..1..0..1
		

Formula

Empirical: a(n) = 9*a(n-1) +51*a(n-2) +222*a(n-3) +815*a(n-4) +770*a(n-5) -1668*a(n-6) -4457*a(n-7) -7039*a(n-8) -6459*a(n-9) +2910*a(n-10) +4218*a(n-11) +4541*a(n-12) +9610*a(n-13) -285*a(n-14) -4890*a(n-15) -152*a(n-16) -224*a(n-17) +432*a(n-18) +512*a(n-19) -256*a(n-20)

A232080 Number of (4+1)X(n+1) 0..1 arrays with every element equal to some horizontal, diagonal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

111, 3985, 82996, 2265691, 64298979, 1786680190, 49535329657, 1375366780223, 38192786490900, 1060470627750905, 29445068097883913, 817579005907041518, 22701109558899272767, 630324525317504125167, 17501743597007465575440
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Row 4 of A232076

Examples

			Some solutions for n=3
..0..0..0..0....0..1..1..1....0..0..1..0....0..0..0..0....0..0..1..0
..1..1..1..1....0..0..1..1....0..1..0..1....1..1..0..1....0..1..0..0
..1..0..0..1....1..0..1..1....0..0..0..0....1..0..1..0....1..1..1..0
..1..1..0..0....1..1..1..1....1..0..1..0....1..0..0..0....0..0..1..1
..0..0..1..1....1..0..0..0....1..1..1..1....1..1..1..0....0..1..0..1
		

Formula

Empirical recurrence of order 54 (see link above)
Showing 1-10 of 14 results. Next