A232078 Number of (2+1) X (n+1) 0..1 arrays with every element equal to some horizontal, diagonal or antidiagonal neighbor, with top left element zero.
11, 87, 520, 3681, 26587, 189404, 1348429, 9607995, 68462448, 487805049, 3475683907, 24764857724, 176453944877, 1257264924795, 8958230513184, 63828946109201, 454792310901883, 3240474086774308, 23088939844648997
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0..0..1..0..0..0..0....0..0..0..1..1..1..1....0..0..0..0..0..0..0 ..0..1..1..0..1..1..1....0..0..1..1..1..0..1....0..1..1..1..0..1..0 ..1..0..0..1..1..1..1....0..1..0..1..0..1..0....1..0..0..0..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 2 of A232076.
Formula
Empirical: a(n) = 5*a(n-1) + 11*a(n-2) + 23*a(n-3) + 45*a(n-4) + 10*a(n-5) + a(n-6) - 3*a(n-7) - 2*a(n-8).
Empirical g.f.: x*(11 + 32*x - 36*x^2 - 129*x^3 - 34*x^4 - 7*x^5 + 8*x^6 + 6*x^7) / (1 - 5*x - 11*x^2 - 23*x^3 - 45*x^4 - 10*x^5 - x^6 + 3*x^7 + 2*x^8). - Colin Barker, Oct 03 2018