This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232087 #36 May 23 2024 07:08:24 %S A232087 0,1,8,77,98,99,100,764,765,5711,5736,9797,9998,9999,10000,76394, %T A232087 77327,997997,999998,999999,1000000,2798254,7639321,8053139,25225733, %U A232087 42808341,57359313,60755907,62996069,99979997,99999998,99999999,100000000,127016654 %N A232087 Second-order base-10 grafting integers. %C A232087 Second-order base-10 grafting integers are integers that, when expressed in base 10, will appear in their own square root before or directly after the decimal point (ignoring leading 0's and including trailing 0's). %C A232087 All numbers of the form 10^2n, 10^2n - 1, and 10^2n - 2, n >= 1, are terms. %C A232087 All numbers of the form (10^n-3)*(10^n+1), n > 0, are terms. %D A232087 Robert Tanniru, A short note introducing Grafting Numbers and their connection to Catalan Numbers, J. Comb. Math. and Comb. Computing, 95 (2015), 309-312. %H A232087 Robert Tanniru, <a href="http://roberttanniru.weebly.com/grafting-numbers.html">Introduction to Grafting Numbers</a>. %H A232087 Robert Tanniru, <a href="/A232087/a232087.txt">PARI code</a>. %H A232087 Robert Tanniru, <a href="https://www.researchgate.net/publication/301633218_A_short_note_introducing_grafting_numbers_and_their_connection_to_Catalan_Numbers">A short note introducing Grafting Numbers and their connection to Catalan Numbers</a>, ResearchGate, 2015. %e A232087 sqrt(764) = 27.64054992... %e A232087 sqrt(77327) = 278.0773273749... %e A232087 sqrt(1000000) = 1000.000... %o A232087 (PARI) %o A232087 /* Uses PARI functions provided in link %o A232087 * Sample run uses a = [0,11], b=10, p=2, direct=FALSE */ %o A232087 GetAllGIs(0,11,10,2,0) %Y A232087 Cf. A074841 (subsequence). %K A232087 nonn,base %O A232087 1,3 %A A232087 _Robert Tanniru_, Nov 17 2013