cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232091 Smallest square or promic (oblong) number greater than or equal to n.

This page as a plain text file.
%I A232091 #52 Dec 23 2024 14:53:43
%S A232091 0,1,2,4,4,6,6,9,9,9,12,12,12,16,16,16,16,20,20,20,20,25,25,25,25,25,
%T A232091 30,30,30,30,30,36,36,36,36,36,36,42,42,42,42,42,42,49,49,49,49,49,49,
%U A232091 49,56,56,56,56,56,56,56,64,64,64,64,64,64,64,64,72,72,72,72,72,72,72,72,81
%N A232091 Smallest square or promic (oblong) number greater than or equal to n.
%C A232091 Result attributed to the students Daring, et al., in the links section.
%C A232091 a(n) appears in floor(sqrt(a(n))) = A000194(n) successive terms.
%C A232091 Counting successive equal terms give sequence: 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ... (see A008619). - _Michel Marcus_, Jan 10 2014
%H A232091 Charles R Greathouse IV, <a href="/A232091/b232091.txt">Table of n, a(n) for n = 0..10000</a>
%H A232091 David Applegate, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2014-January/012229.html">Proof of the equality A216607(n) = A232091(n) - n</a>.
%H A232091 E. Daring, I. Guadarrama, S. Sprague, and C. Winterer, <a href="http://whaleconjecture.wordpress.com/">WhaleConjecture</a>.
%H A232091 Casey Douglas, <a href="https://web.archive.org/web/20150912213402/https://mathematicalypse.wordpress.com/2012/06/24/the-next-square-or-pronic/">The Next Square or Pronic</a>, June 2012. [Wayback Machine copy]
%F A232091 a(n) = ceiling(n/ceiling(sqrt(n)))*ceiling(sqrt(n)).
%F A232091 a(n) = min(k : k >= n, k in A002620).
%F A232091 a(k^2) = k^2; a(k*(k+1)) = k*(k+1).
%F A232091 It appears that a(n) = A216607(n) + n. (Verified for all n<10^9 by _Lars Blomberg_, Jan 09 2014.) This conjecture now follows from a proof given by _David Applegate_, Jan 10 2014 (see [Applegate]).
%F A232091 a(n) = min(A048761(n), A259225(n)). - _Michel Marcus_, Jun 22 2015
%F A232091 Sum_{n>=1} 1/a(n)^2 = 2 - Pi^2/6 + zeta(3). - _Amiram Eldar_, Aug 16 2022
%t A232091 Join[{0}, Table[Ceiling[n/Ceiling[Sqrt[n]]] Ceiling[Sqrt[n]], {n, 100}]] (* _Alonso del Arte_, Nov 18 2013 *)
%o A232091 (PARI) a(n)=my(t=sqrtint(n-1)+1);t*((n-1)\t+1) \\ _Charles R Greathouse IV_, Nov 18 2013
%o A232091 (Magma) [(Ceiling(n /Ceiling(Sqrt(n)))*Ceiling(Sqrt(n))): n in [1..80]]; // _Vincenzo Librandi_, Jun 22 2015
%Y A232091 Cf. A048761, A235382, A259225.
%Y A232091 Cf. A000290 (squares), A002378 (promic or oblong numbers), A002620 (A000290 union A002378).
%K A232091 nonn,easy
%O A232091 0,3
%A A232091 _L. Edson Jeffery_, Nov 18 2013
%E A232091 Extended by _Charles R Greathouse IV_, Nov 18 2013
%E A232091 a(0)=0 prepended by _Michel Marcus_, Jun 22 2015