This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232091 #52 Dec 23 2024 14:53:43 %S A232091 0,1,2,4,4,6,6,9,9,9,12,12,12,16,16,16,16,20,20,20,20,25,25,25,25,25, %T A232091 30,30,30,30,30,36,36,36,36,36,36,42,42,42,42,42,42,49,49,49,49,49,49, %U A232091 49,56,56,56,56,56,56,56,64,64,64,64,64,64,64,64,72,72,72,72,72,72,72,72,81 %N A232091 Smallest square or promic (oblong) number greater than or equal to n. %C A232091 Result attributed to the students Daring, et al., in the links section. %C A232091 a(n) appears in floor(sqrt(a(n))) = A000194(n) successive terms. %C A232091 Counting successive equal terms give sequence: 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ... (see A008619). - _Michel Marcus_, Jan 10 2014 %H A232091 Charles R Greathouse IV, <a href="/A232091/b232091.txt">Table of n, a(n) for n = 0..10000</a> %H A232091 David Applegate, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2014-January/012229.html">Proof of the equality A216607(n) = A232091(n) - n</a>. %H A232091 E. Daring, I. Guadarrama, S. Sprague, and C. Winterer, <a href="http://whaleconjecture.wordpress.com/">WhaleConjecture</a>. %H A232091 Casey Douglas, <a href="https://web.archive.org/web/20150912213402/https://mathematicalypse.wordpress.com/2012/06/24/the-next-square-or-pronic/">The Next Square or Pronic</a>, June 2012. [Wayback Machine copy] %F A232091 a(n) = ceiling(n/ceiling(sqrt(n)))*ceiling(sqrt(n)). %F A232091 a(n) = min(k : k >= n, k in A002620). %F A232091 a(k^2) = k^2; a(k*(k+1)) = k*(k+1). %F A232091 It appears that a(n) = A216607(n) + n. (Verified for all n<10^9 by _Lars Blomberg_, Jan 09 2014.) This conjecture now follows from a proof given by _David Applegate_, Jan 10 2014 (see [Applegate]). %F A232091 a(n) = min(A048761(n), A259225(n)). - _Michel Marcus_, Jun 22 2015 %F A232091 Sum_{n>=1} 1/a(n)^2 = 2 - Pi^2/6 + zeta(3). - _Amiram Eldar_, Aug 16 2022 %t A232091 Join[{0}, Table[Ceiling[n/Ceiling[Sqrt[n]]] Ceiling[Sqrt[n]], {n, 100}]] (* _Alonso del Arte_, Nov 18 2013 *) %o A232091 (PARI) a(n)=my(t=sqrtint(n-1)+1);t*((n-1)\t+1) \\ _Charles R Greathouse IV_, Nov 18 2013 %o A232091 (Magma) [(Ceiling(n /Ceiling(Sqrt(n)))*Ceiling(Sqrt(n))): n in [1..80]]; // _Vincenzo Librandi_, Jun 22 2015 %Y A232091 Cf. A048761, A235382, A259225. %Y A232091 Cf. A000290 (squares), A002378 (promic or oblong numbers), A002620 (A000290 union A002378). %K A232091 nonn,easy %O A232091 0,3 %A A232091 _L. Edson Jeffery_, Nov 18 2013 %E A232091 Extended by _Charles R Greathouse IV_, Nov 18 2013 %E A232091 a(0)=0 prepended by _Michel Marcus_, Jun 22 2015