cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232103 Square array read by antidiagonals: T(m,n) = number of ways of drawing a simple loop on an m x n rectangular lattice of dots in such a way that it touches each edge.

This page as a plain text file.
%I A232103 #31 Sep 24 2019 05:06:23
%S A232103 1,1,1,1,5,1,1,15,15,1,1,39,106,39,1,1,97,582,582,97,1,1,237,2952,
%T A232103 6074,2952,237,1,1,575,14488,56778,56778,14488,575,1,1,1391,69982,
%U A232103 510600,943340,510600,69982,1391,1,1,3361,335356,4502836,15009212,15009212
%N A232103 Square array read by antidiagonals: T(m,n) = number of ways of drawing a simple loop on an m x n rectangular lattice of dots in such a way that it touches each edge.
%C A232103 This sequence is to be read as a table:
%C A232103 1,   1,   1,   1,   1, ...
%C A232103 1,   5,  15,  39, ...
%C A232103 1,  15, 106, ...
%C A232103 1,  39, ...
%C A232103 1, ...
%C A232103 ...
%C A232103 This represents the number of simple, closed loops that can be formed on an m x n lattice of dots in such a way that it touches each edge.
%C A232103 This sequence is related to A231829, called b(i,j) by a(i,j) = b(i,j) - 2 * b(i,j-1) + b(i,j-2) - 2 * b(i-1,j) + 4 * b(i-1,j-1) - 2 * b(j-1,j-2) + b(i-2,j) - 2 * b(i-2,j-1) + b(i-2,j-2).
%C A232103 Equivalently, the number of fixed polyominoes without holes that have a width of m and height of n. - _Andrew Howroyd_, Oct 04 2017
%H A232103 Andrew Howroyd, <a href="/A232103/b232103.txt">Table of n, a(n) for n = 1..325</a>
%H A232103 Jean-François Alcover, <a href="/A232103/a232103.txt">Mathematica program</a>
%F A232103 T(m, n) = U(m, n) - 2*U(m, n-1) + U(m, n-2) where U(m, n) = V(m, n) - 2*V(m-1, n) + V(m-2, n) and V(m, n) = A231829(m, n). - _Andrew Howroyd_, Oct 04 2017
%e A232103 Array begins:
%e A232103 ==============================================================
%e A232103 m\n| 1   2     3       4         5           6            7
%e A232103 ---|----------------------------------------------------------
%e A232103 1  | 1   1     1       1         1           1            1...
%e A232103 2  | 1   5    15      39        97         237          575...
%e A232103 3  | 1  15   106     582      2952       14488        69982...
%e A232103 4  | 1  39   582    6074     56778      510600      4502836...
%e A232103 5  | 1  97  2952   56778    943340    15009212    234411981...
%e A232103 6  | 1 237 14488  510600  15009212   419355340  11509163051...
%e A232103 7  | 1 575 69982 4502836 234411981 11509163051 554485727288...
%e A232103 ... - _Andrew Howroyd_, Oct 04 2017
%e A232103 a(3,2) is 15, thus:
%e A232103 1)        2)        3)        4)        5)
%e A232103 +-+-+-+   +-+-+-+   + +-+-+   +-+-+-+   +-+-+-+
%e A232103 |     |   |     |     |   |   |     |   |     |
%e A232103 + +-+-+   +-+ +-+   +-+ +-+   + + +-+   +-+-+ +
%e A232103 | |         | |     |   |     |   |         | |
%e A232103 +-+ + +   + +-+ +   +-+-+ +   +-+-+ +   + + +-+
%e A232103 6)        7)        8)        9)        10)
%e A232103 +-+-+-+   +-+-+ +   +-+-+-+   +-+ + +   + +-+ +
%e A232103 |     |   |   |     |     |   | |         | |
%e A232103 + +-+ +   +-+ +-+   +-+ + +   + +-+-+   +-+ +-+
%e A232103 | | | |     |   |     |   |   |     |   |     |
%e A232103 +-+ +-+   + +-+-+   + +-+-+   +-+-+-+   +-+-+-+
%e A232103 11)       12)       13)       14)       15)
%e A232103 +-+-+ +   + + +-+   +-+ +-+   + +-+-+   +-+-+-+
%e A232103 |   |         | |   | | | |     |   |   |     |
%e A232103 +   +-+   +-+-+ +   + +-+ +   +-+ + +   + + + +
%e A232103 |     |   |     |   |     |   |     |   |     |
%e A232103 +-+-+-+   +-+-+-+   +-+-+-+   +-+-+-+   +-+-+-+
%Y A232103 Rows 2-3 are A034182, A293263.
%Y A232103 Main diagonal is A293261.
%Y A232103 Cf. A231829, A292357.
%K A232103 nonn,tabl
%O A232103 1,5
%A A232103 _Douglas Boffey_, Nov 21 2013