cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232109 Least prime p < n + 5 with n + (p-1)*(p-3)/8 prime, or 0 if such a prime p does not exist.

Original entry on oeis.org

5, 3, 3, 5, 3, 5, 3, 7, 11, 5, 3, 5, 3, 7, 17, 5, 3, 5, 3, 7, 11, 5, 3, 23, 17, 7, 11, 5, 3, 5, 3, 13, 11, 7, 19, 5, 3, 7, 17, 5, 3, 5, 3, 7, 17, 5, 3, 23, 11, 7, 11, 5, 3, 23, 17, 7, 11, 5, 3, 5, 3, 31, 11, 7, 19, 5, 3, 7, 11, 5, 3, 5, 3, 13, 17, 7, 19, 5, 3, 7, 17, 5, 3, 23, 17, 7, 11, 5, 3, 29, 11, 13, 11, 7, 19, 5, 3, 7, 11, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 18 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0. Moreover, for any integer n > 1 there exists a prime p < 2*sqrt(n)*log(7n) such that n + (p-1)*(p-3)/8 is prime.
This implies that any integer n > 1 can be written as (p-1)/2 + q with q a positive integer, and p and (p^2-1)/8 + q both prime.

Examples

			a(1) = 5 since neither 1 + (2-1)*(2-3)/8 = 7/8 nor 1 + (3-1)*(3-3)/8 = 1  is prime, but 1 + (5-1)*(5-3)/8 = 2 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[Do[If[PrimeQ[n+(Prime[k]-1)(Prime[k]-3)/8],Goto[aa]],{k,1,PrimePi[n+4]}];
    Print[n," ",0];Label[aa];Continue,{n,1,100}]