This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232127 #17 Jul 07 2021 09:28:45 %S A232127 7,7,7,7,1,6,3,8,6,6,3,6,1,5,3,0,6,5,5,4,6,1,1,0,2,4,9,0,4,0,5,1,1,5, %T A232127 3,1,2,1,0,2,0,4,2,3,7,5,2,3,4,3,5,4,5,0,4,3,4,5,3,1,1,5,1,2,2,0,6,3, %U A232127 0,4,5,2,4,5,1,2,0,0,3,10,0,3,0,2,4,0,3,0,0,6 %N A232127 Maximal number of digits that can be appended to prime(n) preserving primality at each step. %C A232127 Consider chains (p^(0),p^(1),p^(2),...p^(L)) of primes such that p^(k-1) = floor(p^(k)/10), or otherwise said, p^(k+1) is obtained from p^(k) by appending a digit. Then a(n) is one less than the number of primes in the longest possible such chain with p^(0)=prime(n). %H A232127 Michael S. Branicky, <a href="/A232127/b232127.txt">Table of n, a(n) for n = 1..10000</a> %H A232127 Archimedes' Lab, <a href="http://www.archimedes-lab.org/numbers/Num24_69.html">What's Special About This Number?</a>, section about 43. %F A232127 a(n)=A232128(A000040(n)). %F A232127 a(n) > 0 if and only if there is a prime p between 10*prime(n)+1 and 10*prime(n)+9, in which case a(n) >= 1+a(primepi(p)) %F A232127 a(n) = max { L in N | exists (p[0],...,p[L]) in P^(L+1) (P = the primes A000040), such that p[0] = prime(n) and for k=1,...,L : p[k-1] = floor(p[k]/10) } %e A232127 a(14)=5 because for prime(14)=43, one can add at most 5 digits to the right preserving primality at each step: 439 is prime, 4391 is prime, 43913 is prime, 439133 is prime, 4391339 is prime. There is no longer chain possible starting with 43. %o A232127 (PARI) {howfar(p)=my(m);forstep(d=1,9,2,d==5&&next;isprime(p*10+d)||next;m=max(1+howfar(10*p+d),m));m} %o A232127 (Python) %o A232127 from sympy import isprime, prime %o A232127 def a(n): %o A232127 pn = prime(n); ftr = {pn}; ext = 0 %o A232127 while len(ftr) > 0: %o A232127 r1 = set(filter(isprime, (int(str(e)+d) for d in "1379" for e in ftr))) %o A232127 ext, ftr = ext+1, r1 %o A232127 return ext - 1 %o A232127 print([a(n) for n in range(1, 91)]) # _Michael S. Branicky_, Jul 07 2021 %o A232127 (Python) # faster version for initial segment of sequence %o A232127 from sympy import isprime, prime, primerange %o A232127 def aupton(terms): %o A232127 alst = [] %o A232127 for p in primerange(1, prime(terms)+1): %o A232127 r = {p}; e = 0 %o A232127 while len(r) > 0: %o A232127 r1 = set(filter(isprime, (int(str(e)+d) for d in "1379" for e in r))) %o A232127 e, r = e+1, r1 %o A232127 alst.append(e - 1) %o A232127 return alst %o A232127 print(aupton(90)) # _Michael S. Branicky_, Jul 07 2021 %Y A232127 Cf. A232125. %K A232127 nonn,base %O A232127 1,1 %A A232127 _M. F. Hasler_ and _Michel Marcus_, Nov 19 2013