A232129 Largest prime that can be obtained from n by successively appending digits to the right with the constraint that each of the numbers obtained that way must be prime; a(n)=0 if there is no such prime at all.
1979339339, 29399999, 37337999, 4391339, 59393339, 6733997, 73939133, 839, 9719, 103997939939, 113, 12791333, 13999133, 149399, 15797, 1637, 17333, 1811993, 1979339339, 0, 21139, 2273993, 23399339, 24179399, 2579939, 2699393, 27191939, 2837, 29399999, 3079, 31379, 0, 331999799, 3491333, 35393999
Offset: 1
Examples
Starting with 8, one can get the primes 83 and 89 which is larger, but 83 allows one further extension to 839 while 89 does not (no prime in the range 890..899). No further extension is possible, since there are no primes in the range 8390,...,8399. Therefore a(8)=839 and A232128(8)=2. a(20)=a(42)=0 since no prime can be obtained by appending one digit to 20 or 42.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
- Archimedes' Lab, What's Special About This Number?, section about 43.
Programs
-
PARI
{A232129(n)=local(t(p)=my(m,r=[0,p]);forstep(d=1,9,2,isprime(p*10+d)&&(m=t(10*p+d)+[1,0])[1]>=r[1]&&r=m);r);n<(n=t(n))[2]&&return(n[2])}
-
Python
from sympy import isprime, nextprime def a(n): while True: extends, reach, maxp = -1, {n}, 0 while len(reach) > 0: candidates = (int(str(e)+d) for d in "1379" for e in reach) reach1 = set(filter(isprime, candidates)) extends, reach, maxp = extends+1, reach1, max({maxp}|reach1) return maxp print([a(n) for n in range(1, 36)]) # Michael S. Branicky, Sep 07 2021
Comments