A232131 Number of (n+1) X (2+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.
36, 728, 14752, 298912, 6056640, 122721280, 2486611712, 50384397824, 1020902270976, 20685797427200, 419141212008448, 8492752393142272, 172082441775661056, 3486780892303556608, 70650095765044723712
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0 ..1..0..0....0..1..0....1..0..2....0..0..2....0..1..0....0..1..1....1..0..1 ..1..2..1....1..2..0....0..1..0....2..2..1....0..0..2....1..0..0....2..1..2 ..0..1..2....0..2..0....2..0..1....0..2..1....1..2..1....1..2..2....0..0..1 ..2..0..2....2..1..0....0..1..2....1..0..1....0..1..0....1..0..2....1..0..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A232137.
Formula
Empirical: a(n) = 22*a(n-1) - 36*a(n-2) + 16*a(n-3).
Empirical g.f.: 4*x*(9 - 16*x + 8*x^2) / (1 - 22*x + 36*x^2 - 16*x^3). - Colin Barker, Oct 03 2018