This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232137 #6 Jul 23 2025 06:54:12 %S A232137 6,36,44,200,728,328,1140,10956,14752,2448,6468,169692,602468,298912, %T A232137 18272,36752,2616952,25364480,33162868,6056640,136384,208772,40399768, %U A232137 1063744484,3795674252,1825568436,122721280,1017984,1186044,623543776 %N A232137 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order. %C A232137 Table starts %C A232137 .....6......36........200.........1140............6468.............36752 %C A232137 ....44.....728......10956.......169692.........2616952..........40399768 %C A232137 ...328...14752.....602468.....25364480......1063744484.......44671124016 %C A232137 ..2448..298912...33162868...3795674252....433383414596....49550984711452 %C A232137 .18272.6056640.1825568436.568008109436.176569302110496.54960219182423136 %H A232137 R. H. Hardin, <a href="/A232137/b232137.txt">Table of n, a(n) for n = 1..143</a> %F A232137 Empirical for column k: %F A232137 k=1: a(n) = 8*a(n-1) -4*a(n-2) %F A232137 k=2: a(n) = 22*a(n-1) -36*a(n-2) +16*a(n-3) %F A232137 k=3: [order 8] %F A232137 k=4: [order 14] %F A232137 k=5: [order 34] for n>36 %F A232137 Empirical for row n: %F A232137 n=1: a(n) = 6*a(n-1) -11*a(n-3) +4*a(n-4) %F A232137 n=2: [order 17] %F A232137 n=3: [order 76] for n>77 %e A232137 Some solutions for n=2 k=4 %e A232137 ..0..1..2..0..1....0..1..2..0..1....0..1..2..1..0....0..1..2..0..0 %e A232137 ..0..0..1..2..1....0..0..2..0..2....1..0..2..0..2....0..0..2..2..1 %e A232137 ..1..2..1..0..2....0..2..0..1..2....1..2..1..2..0....2..0..2..1..2 %Y A232137 Column 1 is A102591 %K A232137 nonn,tabl %O A232137 1,1 %A A232137 _R. H. Hardin_, Nov 19 2013