cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A232130 Number of (n+1)X(n+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

6, 728, 602468, 3795674252, 176569302110496, 60960050569112225624, 156025607439258576501944264, 2960693161885750577087228146201160, 416501345588614541672537137056124519706624
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2013

Keywords

Comments

Diagonal of A232137

Examples

			Some solutions for n=2
..0..1..2....0..1..2....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0
..0..1..2....2..1..0....2..1..0....2..0..2....0..1..1....2..2..0....2..0..1
..2..1..2....1..0..1....0..1..2....0..1..2....0..0..2....2..0..2....1..2..0
		

A232131 Number of (n+1) X (2+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

36, 728, 14752, 298912, 6056640, 122721280, 2486611712, 50384397824, 1020902270976, 20685797427200, 419141212008448, 8492752393142272, 172082441775661056, 3486780892303556608, 70650095765044723712
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2013

Keywords

Examples

			Some solutions for n=4:
..0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0
..1..0..0....0..1..0....1..0..2....0..0..2....0..1..0....0..1..1....1..0..1
..1..2..1....1..2..0....0..1..0....2..2..1....0..0..2....1..0..0....2..1..2
..0..1..2....0..2..0....2..0..1....0..2..1....1..2..1....1..2..2....0..0..1
..2..0..2....2..1..0....0..1..2....1..0..1....0..1..0....1..0..2....1..0..2
		

Crossrefs

Column 2 of A232137.

Formula

Empirical: a(n) = 22*a(n-1) - 36*a(n-2) + 16*a(n-3).
Empirical g.f.: 4*x*(9 - 16*x + 8*x^2) / (1 - 22*x + 36*x^2 - 16*x^3). - Colin Barker, Oct 03 2018

A232132 Number of (n+1)X(3+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

200, 10956, 602468, 33162868, 1825568436, 100495188564, 5532131001812, 304536704087316, 16764354299718484, 922856165828434964, 50802046269213120468, 2796587378080211658132, 153948542186521174138196
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2013

Keywords

Comments

Column 3 of A232137

Examples

			Some solutions for n=2
..0..1..1..2....0..1..2..2....0..1..2..2....0..1..1..2....0..1..0..2
..0..0..1..1....0..0..0..1....2..1..1..0....2..0..1..2....0..2..2..1
..1..2..2..0....2..0..2..0....0..1..2..1....1..0..0..2....0..1..2..0
		

Formula

Empirical: a(n) = 65*a(n-1) -588*a(n-2) +2304*a(n-3) -5156*a(n-4) +7136*a(n-5) -5632*a(n-6) +2048*a(n-7) -256*a(n-8)

A232133 Number of (n+1) X (4+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

1140, 169692, 25364480, 3795674252, 568008109436, 85000031249096, 12719895449388800, 1903478569962529436, 284847519195214207740, 42626226776754332086840, 6378834593164563425802400
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2013

Keywords

Comments

Column 4 of A232137.

Examples

			Some solutions for n=1
..0..1..2..1..2....0..1..0..1..2....0..1..0..1..1....0..1..2..0..2
..1..2..0..2..1....1..2..0..1..0....2..0..2..0..2....2..1..0..1..2
		

Crossrefs

Cf. A232137.

Formula

Empirical: a(n) = 191*a(n-1) -6912*a(n-2) +115408*a(n-3) -1111971*a(n-4) +6750425*a(n-5) -26789260*a(n-6) +69724040*a(n-7) -116179712*a(n-8) +120732608*a(n-9) -77737728*a(n-10) +30931968*a(n-11) -7383040*a(n-12) +917504*a(n-13) -32768*a(n-14).

A232134 Number of (n+1)X(5+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

6468, 2616952, 1063744484, 433383414596, 176569302110496, 71938229899528156, 29309235951462780764, 11941235467361717495452, 4865125280955877875502856, 1982160394270679198811981452, 807576290792538717988018624964
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2013

Keywords

Comments

Column 5 of A232137

Examples

			Some solutions for n=1
..0..1..2..0..2..2....0..1..2..1..2..0....0..1..0..0..2..0....0..1..0..2..1..0
..2..0..1..0..0..2....2..0..1..0..2..0....2..1..1..0..2..0....2..0..1..2..2..0
		

Formula

Empirical: a(n) = 561*a(n-1) -73140*a(n-2) +4741713*a(n-3) -189590243*a(n-4) +5166741030*a(n-5) -101404015378*a(n-6) +1481747635516*a(n-7) -16476516135731*a(n-8) +141802609562487*a(n-9) -960379067630908*a(n-10) +5207827691109751*a(n-11) -22965923908030370*a(n-12) +83424252857795943*a(n-13) -252125730302308846*a(n-14) +638719837675651150*a(n-15) -1364105336060855188*a(n-16) +2468073823021873449*a(n-17) -3803666086866956608*a(n-18) +5031007274209568576*a(n-19) -5774992822154852288*a(n-20) +5840357323644746240*a(n-21) -5289580945576167424*a(n-22) +4336919045252018176*a(n-23) -3211173022706860032*a(n-24) +2114909947423555584*a(n-25) -1214396287189254144*a(n-26) +594076082478514176*a(n-27) -239111167128109056*a(n-28) +75437217383710720*a(n-29) -17717117784686592*a(n-30) +2944599513366528*a(n-31) -325009838964736*a(n-32) +21251498180608*a(n-33) -618475290624*a(n-34) for n>36

A232135 Number of (n+1)X(6+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

36752, 40399768, 44671124016, 49550984711452, 54960219182423136, 60960050569112225624, 67614860357164156333264, 74996151957155670567677196, 83183234634538478967287390676, 92264074124974671889628121850048
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2013

Keywords

Comments

Column 6 of A232137

Examples

			Some solutions for n=1
..0..1..2..0..1..2..1....0..1..2..2..1..2..1....0..1..2..0..2..2..1
..2..0..1..0..0..1..0....1..0..0..2..1..0..2....0..1..0..1..0..1..2
		

A232136 Number of (n+1)X(7+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

208772, 623543776, 1875654465544, 5664993176292288, 17107853745211295232, 51664900164122521134304, 156025607439258576501944264, 471190133881437195999528168348, 1422972465138592273774293522582768
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2013

Keywords

Comments

Column 7 of A232137

Examples

			Some solutions for n=1
..0..1..2..1..0..1..0..2....0..1..1..2..0..1..0..1....0..1..2..2..1..1..0..0
..0..0..2..1..0..1..0..2....0..2..1..1..2..1..0..1....0..1..0..2..0..1..2..0
		

A232138 Number of (1+1) X (n+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

6, 36, 200, 1140, 6468, 36752, 208772, 1186044, 6737864, 38277700, 217454804, 1235356496, 7018035732, 39869322348, 226496831848, 1286724024020, 7309853741220, 41527134586384, 235914830581476, 1340227488431516
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2013

Keywords

Examples

			Some solutions for n=6:
..0..1..2..0..2..1..0....0..1..0..1..2..0..1....0..1..2..2..0..1..0
..2..1..1..2..1..2..1....2..0..1..0..1..0..1....2..0..0..1..2..2..1
		

Crossrefs

Row 1 of A232137.

Formula

Empirical: a(n) = 6*a(n-1) - 11*a(n-3) + 4*a(n-4).
Empirical g.f.: 2*x*(3 - 8*x^2 + 3*x^3) / (1 - 6*x + 11*x^3 - 4*x^4). - Colin Barker, Oct 03 2018

A232139 Number of (2+1)X(n+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

44, 728, 10956, 169692, 2616952, 40399768, 623543776, 9624373808, 148550587192, 2292857494812, 35389922134468, 546238342870352, 8431109896279836, 130132963416612180, 2008583492065392256, 31002196055330559468
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2013

Keywords

Comments

Row 2 of A232137

Examples

			Some solutions for n=3
..0..1..0..1....0..1..1..2....0..1..2..2....0..1..2..2....0..1..0..2
..1..2..1..2....0..0..2..2....2..1..0..2....0..1..0..2....1..0..0..2
..1..0..1..2....2..0..0..1....2..2..0..1....1..2..0..1....2..1..2..0
		

Formula

Empirical: a(n) = 15*a(n-1) +16*a(n-2) -163*a(n-3) +305*a(n-4) +116*a(n-5) -2324*a(n-6) +1718*a(n-7) -5922*a(n-8) +14296*a(n-9) +18892*a(n-10) -15292*a(n-11) -21000*a(n-12) -12320*a(n-13) -17184*a(n-14) +11072*a(n-15) +5120*a(n-17)

A232140 Number of (3+1)X(n+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

328, 14752, 602468, 25364480, 1063744484, 44671124016, 1875654465544, 78758608380688, 3307040482438920, 138861420876088764, 5830738287776487908, 244830499590623017720, 10280340127332484865416, 431667596881321790496532
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2013

Keywords

Comments

Row 3 of A232137

Examples

			Some solutions for n=2
..0..1..2....0..1..2....0..1..0....0..1..0....0..1..1....0..1..1....0..1..1
..1..0..0....1..0..0....0..1..2....2..2..2....0..0..2....2..2..0....2..0..0
..1..2..0....1..2..1....1..0..1....1..1..1....1..1..2....1..2..0....0..2..1
..1..2..1....1..0..1....1..2..0....0..2..1....0..0..1....1..0..2....0..1..2
		

Formula

Empirical recurrence of order 76 (see link above)
Showing 1-10 of 14 results. Next