A232155 Number of n X 2 0..3 arrays with every 0 next to a 1, every 1 next to a 2 and every 2 next to a 3 horizontally, vertically or antidiagonally, and no adjacent values equal.
2, 18, 62, 218, 746, 2600, 9004, 31262, 108492, 376566, 1307146, 4537292, 15750222, 54673186, 189786782, 658806476, 2286917482, 7938591212, 27557292770, 95659868830, 332064969492, 1152700237642, 4001379292082, 13890026339060
Offset: 1
Keywords
Examples
Some solutions for n=7: ..2..1....2..3....3..1....0..3....1..3....0..1....0..1....2..1....3..0....1..2 ..3..0....0..1....0..2....1..2....2..1....2..3....3..2....3..2....1..3....0..3 ..2..3....2..3....3..1....3..0....3..0....1..2....0..1....1..0....2..0....1..0 ..1..2....0..1....2..0....2..1....1..2....0..3....3..2....3..2....1..3....2..1 ..3..1....2..3....3..1....3..2....3..1....1..0....1..3....0..1....2..1....3..0 ..2..0....1..2....0..2....1..0....2..3....2..3....2..1....3..2....3..0....1..2 ..3..2....0..3....1..3....2..3....1..0....1..2....3..2....0..1....2..1....3..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A232161.
Formula
Empirical: a(n) = 4*a(n-1) + 2*a(n-2) - 13*a(n-3) - 5*a(n-4) + 14*a(n-5) - 3*a(n-6) + 3*a(n-7) + 8*a(n-8) + a(n-9) - a(n-10) for n>11.
Empirical g.f.: 2*x*(1 + 5*x - 7*x^2 - 20*x^3 - 3*x^4 + 24*x^5 + 5*x^6 + 7*x^7 + 15*x^8 + 2*x^9 - 2*x^10) / (1 - 4*x - 2*x^2 + 13*x^3 + 5*x^4 - 14*x^5 + 3*x^6 - 3*x^7 - 8*x^8 - x^9 + x^10). - Colin Barker, Oct 03 2018